расчет бокового давления грунта на стены подвала
Давление грунта на стену подвала: как решить проблему
Весьма серьезной проблемой для строителей является боковое давление грунта на стены подвала и преодоление этого давления. Так уж вышло, что проигнорировать её никак нельзя, ибо если стена подвала, а по сути, фундамент дома не выдержит веса и давления, которое на него оказывается, то это может иметь печальные последствия.
Из чего делают фундамент дома и стены подвалов
Чем больший дом – тем печальнее последствия. Но за всё время своего развития люди научились качественно противодействовать подобному влиянию физики, и для этого используют самые различные материалы. Не помешает пройтись по основным способам создания качественного фундамента своими руками (см. Фундамент под подвал: какой лучше сделать).
Что может быть использовано в качестве материалов для стены подвала? Это зависит от того, какой формат будет иметь само помещение. В качестве эффективного сырья себя зарекомендовали бетон, кирпич, камни и железобетонные пластины.
Технические характеристики материалов
Каждый из этих материалов имеет свои особенности применения, и свою сферу:
Бетон. | Бетонирование стен погреба является одним из самых популярных вариантов и чаще всего применяется на практике. |
Кирпич. | Кирпич человечество научилось использовать давно, ещё до нашей эры. Недостатком этого материала является то, что сам по себе использовать кирпич проблематично, нужен скрепляющий раствор.Совет. Как правило, подобным раствором выступает бетон, который намазывается в промежутках между кирпичами. |
Камни. | Камни человек начал использовать ещё задолго до кирпича, с их помощью можно создавать даже узоры внутри помещения. Имеют тот же недостаток, что и кирпич – необходим бетон для надёжного скрепления (можно обойтись и без него, но это на свой риск) и дополнительно – довольно высокая цена материала, которая колеблется от типа используемого камня. |
Железобетонные пластины. | Железобетонные пластины. Такой материал для тех, кто ценит надёжность и прочность, а также строит погреб или фундамент на всю свою оставшуюся жизнь. За счёт железных (зачастую в виде арматурных вставок или сетки) элементов обеспечивается ещё более прочное сцепление, нежели просто при использовании бетона.Совет. Но при работе с пластинами нужно придерживаться техники безопасности и помнить, что инструкция к практически всему пишется кровью. |
Особенности закладок стенок фундаментов домов и стенок погребов
Так как такие помещения строятся на долгое время, требуется качественная работа, после которой не придется ничего переделывать и исправлять.
Это обусловлено и элементарной экономией времени, и неудобством при повторном переделывании объекта:
Совет. Наилучшими в таком случае являются собственноручно изготовленные формы. Впоследствии деревяшки можно оставить как элемент декора.
Утрамбовка нужна хорошая, ввиду значительной высоты стенок и возможность некачественной усадки достаточно велика. Также нельзя допустить, чтобы через 10 дней она начала уже разваливаться.
Создание кирпичной стенки имеет свои особенности
Процесс укладки кирпичей имеет нюансы, так как есть две основные кладки:
Создание стены из камня точь-в-точь повторяет процесс кладки кирпича, за исключением нескольких особенностей:
Железобетонные пластины
При работе с ними необходимо придерживаться точности исполнения и проводить качественные расчёты, так как пластины имеют значительный вес, и в случае несчастного случая последствия могут быть печальными.
Хотя такой вариант по своей функциональности и долговечности больше подходит не для отдельно стоящего подвала, а для подвала внутри дома, так как из-за значительной крепости сможет выдержать вес и нагрузку не только грунта, но и дома. Для более подробной информации рекомендуем посмотреть видео в этой статье.
Виктор Мартович
Расчет бокового давления грунта на стены подвала
Нормативная и справочная литература:
[1] СП 20.13330.2011, п.9.17-9.23 (НИИОСП)
[2] ВСН 136-78, прил. 11 (МинТрансСтрой)
[3] СП 43.13330.2012, прил.В (ЦНИИПромзданий)
[4] Руководство по проектированию подпорных стен и стен подвалов (ЦНИИПромзданий, НИИОСП) 84 г.
[5] Основания, фундаменты и подземные сооружения (Справочник проектировщика), глава 7 (Снарский, НИИОСП) 85 г.
[6] СП 101.13330.2012 прил.М (Гидропроект, Гипроречтранс)
Если смотреть на то, как изображаются эпюры (в аспекте разделения эпюры на две части), то мне примеры из руководства не нравятся т.к. считаю более корректным изображение, когда ближе к стенке изображается давление от веса грунта, а поверх его давление от нагрузки (как в СП43 рис. В.1.г). Такое расположение ближе к реальности, поскольку давление от веса грунта имеется всегда, а давление от нагрузки появляется впоследствии и добавляется к нагрузке от веса грунта.
Здешний расчет с данными примера 7 (результат сходится): http://webcad.pro/tmp/podpor_564359398.pdf
Здешний расчет с данными примера 8 (в целом сходится, но в примере имеется ошибка на стр.93: ошибочно использовано k=1.35, а должно быть 1.42): http://webcad.pro/tmp/podpor_975027552.pdf
В целом вывод таков, что текущий вариант в рамках принятых предпосылок и допущений корректен и при необходимости может быть дополнен возможностью учета особенностей указанных в СП43. Возможно, следует переработать формулы, таким образом, что бы явным образом показывать «давление сцепления» и изобразить его на эпюрах.
#11 2018-12-29 20:20:46
Re: [НиВ] Расчет бокового давления грунта
Отмечу еще один источник:
[7] Расчет подпорных стенок. 1964г. (Клейн)
#12 2018-12-30 16:52:17
Re: [НиВ] Расчет бокового давления грунта
Здравствуйте!
Картинка почему-то отображается не корректно https://yadi.sk/d/XyyBp3QPNhs0Tg
#13 2018-12-30 19:46:04
Re: [НиВ] Расчет бокового давления грунта
#14 2018-12-31 12:22:49
Re: [НиВ] Расчет бокового давления грунта
Обнаружил, что в Справочнике проектировщика [5] имеется пример 6.3 аналогичный примеру 7 из Руководства [4].
#15 2019-01-03 00:39:29
Re: [НиВ] Расчет бокового давления грунта
Что касается коэффициентов надежности по нагрузке ситуация выглядит немного противоречиво.
С одной стороны п.9.19 СП22 предписывает:
С другой, в руководстве [4] повсеместно используется коэффициент надежности по нагрузке для собственного веса грунта равный 1.1 и соответствующий коэффициент для нагрузки на поверхности равный 1.2.
#16 2019-01-09 11:40:27
Re: [НиВ] Расчет бокового давления грунта
Last edited by Dizel (2019-01-09 11:42:56)
#17 2019-01-11 23:40:12
Re: [НиВ] Расчет бокового давления грунта
>Dizel
Извиняюсь за запоздалый ответ, напряженные послепраздничные дни.
Про разбивку на три эпюры и четвертую суммарную, вообще говоря, не согласен, поскольку идея разбивки эпюр была в том, что бы можно было использовать по отдельности давление от веса грунта и давление от нагрузки. А когда мы рисуем три эпюры (и четвертую сумму) у нас нет по отдельности этих двух компонентов. Поэтому я сам с собою рассуждал так: если за основу вычисления напряжений принять формулу с тремя компонентами (кстати, так сделано и в руководстве [4] и в справочнике [5]), то изображать это целесообразно одной суммарной эпюрой где было бы видно как произошло геометрическое суммирование (т.е. как на рисунке Г из СП43), а рядом две(!) эпюры от собств. веса и нагрузки.
В целом пока резюме таково, что предлагаемый подход (деление эпюры на части и формулы из трех компонентов) предполагает практически полную переделку того, что имеется сейчас. В целом соглашаясь, что такая переделка улучшит расчет, тем не менее пока браться за нее не хочу, ибо свободного времени не в избытке. Поэтому, думаю для начала закрыть все оставшиеся вопросы, что бы можно было расчетом пользоваться, а лоск наводить уже следующим этапом.
Стало быть, надо разобраться с вопросами: 1) о вертикальной составляющей при наличии трения или наклона стенки; 2) о направлении равнодействующей давления в случае давления покоя при наличии наклона поверхности (как к этому относиться).
Расчет бокового давления грунта на стены подвала
РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ПОДПОРНЫХ СТЕН И СТЕН ПОДВАЛОВ ДЛЯ ПРОМЫШЛЕННОГО И ГРАЖДАНСКОГО СТРОИТЕЛЬСТВА
Рекомендовано к изданию решением секции несущих конструкций НТС ЦНИИПромзданий.
Составлено к главам СНиП II-15-74* и II-91-77** и содержит основные положения по расчету и конструированию подпорных стен из монолитного и сборного железобетона с примерами расчета и необходимыми табличными значениями коэффициентов, облегчающих расчет, а также рекомендации по расчету стен подвалов промышленных и гражданских зданий.
* На территории Российской Федерации документ не действует. Действуют СНиП 2.02.01-83, здесь и далее по тексту.
Для инженерно-технических работников проектных и строительных организаций.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Руководство распространяется на проектирование гравитационных подпорных стен для промышленного и гражданского строительства, возводимых на естественных основаниях, а также на проектирование стен подвалов промышленных и гражданских зданий.
1.2. Руководство не распространяется на проектирование подпорных стен магистральных дорог, гидротехнических сооружений, подпорных стен специального назначения (противооползневые, противообвальные и др.), а также на проектирование подпорных стен, предназначенных для строительства в особых условиях (на вечномерзлых, набухающих, просадочных грунтах, на подрабатываемых территориях и др.).
1.3. Проектирование подпорных стен и стен подвалов должно осуществляться на основании:
чертежей генерального плана (горизонтальная и вертикальная планировка);
отчета об инженерно-геологических изысканиях;
технологического задания, содержащего данные о нагрузках и при необходимости особые требования к проектируемой конструкции, например, требования по ограничению деформаций и др.
1.4. Конструкция подпорных стен и стен подвалов должна устанавливаться по данным сравнения вариантов, исходя из технико-экономической целесообразности их применения в конкретных условиях строительства с учетом максимального снижения материалоемкости, трудоемкости и стоимости строительства, а также с учетом условий эксплуатации конструкций.
1.5. Подпорные стены, сооружаемые в населенных пунктах, следует проектировать с учетом архитектурных особенностей этих пунктов.
1.6. При проектировании подпорных стен и стен подвалов должны приниматься конструктивные схемы, обеспечивающие необходимую прочность, устойчивость и пространственную неизменяемость сооружения в целом, а также отдельных элементов его на всех стадиях возведения и эксплуатации.
1.7. Элементы сборных конструкций должны отвечать условиям индустриального изготовления их на специализированных предприятиях.
Целесообразно укрупнять элементы сборных конструкций, насколько это позволяют грузоподъемность монтажных механизмов, а также условия изготовления и транспортирования.
1.8. Для монолитных железобетонных конструкций следует предусматривать унифицированные опалубочные и габаритные размеры, позволяющие применять типовые арматурные изделия и инвентарную опалубку.
1.9. В сборных конструкциях подпорных стен и стен подвалов конструкции узлов и соединений элементов должны обеспечивать надежную передачу усилий, прочность самих элементов в зоне стыка, а также связь дополнительно уложенного бетона в стыке с бетоном конструкции.
1.10. Проектирование конструкций подпорных стен и стен подвалов при наличии агрессивной среды должно вестись с учетом дополнительных требований, предъявляемых главой СНиП III-23-76*.
1.11. Проектирование мер защиты железобетонных конструкций от электрокоррозии должно производиться с учетом требований СН 65-76* «Инструкция по защите железобетонных конструкций от коррозии, вызываемой блуждающими токами».
1.12. При проектировании подпорных стен и стен подвалов следует, как правило, применять унифицированные типовые конструкции.
Проектирование индивидуальных конструкций подпорных стен и стен подвалов допускается в тех случаях, когда параметры и нагрузки для их проектирования превосходят параметры и нагрузки для типовых конструкций, либо когда применение типовых конструкций невозможно исходя из местных условий осуществления строительства.
1.13. В Руководстве рассматриваются подпорные стены и стены подвалов при засыпке их однородным грунтом.
2. МАТЕРИАЛЫ ДЛЯ ПОДПОРНЫХ СТЕН
2.1. В зависимости от принятого конструктивного решения подпорные стены могут возводиться из железобетона, бетона, бутобетона и каменной кладки.
2.2. Выбор материала для подпорных стен обусловливается технико-экономическими соображениями, требованиями долговечности, условиями производства работ, наличием местных строительных материалов и средств механизации.
2.3. Железобетонные и бетонные подпорные стены рекомендуется проектировать из бетона проектной марки по прочности на сжатие:
Предварительно напряженные железобетонные конструкции следует преимущественно проектировать из бетона марки М 300, М 400, М 500, М 600. Для бетонной подготовки следует применять бетон марки М 50 и М 100.
2.5. Бутовая и бутобетонная кладка для подпорных стен должна быть выполнена из камня марки не ниже 150-200 на портландцементном растворе марки не ниже 50.
2.6. Для конструкций, подвергающихся попеременному замораживанию и оттаиванию, в проекте должна быть оговорена марка бетона по морозостойкости.
Проектная марка бетона по морозостойкости для железобетонных конструкций подпорных стен назначается в зависимости от температурного режима их эксплуатации в соответствии с табл.1. Температурный режим эксплуатации устанавливается исходя из значения расчетной зимней температуры наружного воздуха в районе строительства.
Температурный режим эксплуатации подпорных стен
Минимальная проектная марка бетона по морозостойкости
Примечание. Расчетная зимняя температура наружного воздуха принимается как средняя температура воздуха наиболее холодной пятидневки в зависимости от района строительства.
Требования к бутобетону и каменной кладке по морозостойкости предъявляются те же, что и к бетонным и железобетонным конструкциям.
На территории Российской Федерации документ не действует. Действует ГОСТ 5781-82, здесь и далее по тексту.
При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-II марки ВСт5пс2 к применению не допускается.
2.8. В качестве напрягаемой арматуры предварительно напряженных железобетонных элементов следует преимущественно применять термически упрочненную арматуру классов Ат-VI и Ат-V по ГОСТ 10884-78*.
Допускается также применять горячекатаную арматуру классов A-V, A-IV по ГОСТ 5781-75 и термически упрочненную арматуру класса Ат-IV по ГОСТ 10884-81.
При расчетной зимней температуре ниже минус 30 °С арматурная сталь класса A-IV марки 80С к применению не допускается.
2.9. Анкерные тяги и закладные элементы должны приниматься из прокатной полосовой стали класса С 38/23 (ГОСТ 380-71* ) марки ВСт3кп2 при расчетной зимней температуре до минус 30 °С включительно и марки ВСт3пс6 при расчетной температуре от минус 30 °С до минус 40 °С. Для анкерных тяг рекомендуется также сталь С 52/40 марки 10Г2С1 при расчетной зимней температуре до минус 40 °С включительно. Толщину полосовой стали следует принимать не менее 6 мм. Возможно также применение для анкерных тяг арматурной стали класса А-III.
2.10. В сборных железобетонных и бетонных элементах монтажные (подъемные) петли должны выполняться из арматурной стали класса A-I (марок ВСт3сп2 и ВСт3пс2) или из стали класса A-II (марка 10ГТ).
3. ТИПЫ ПОДПОРНЫХ СТЕН
3.1. Подпорные стены по конструктивному решению подразделяются на массивные и тонкостенные.
В массивных подпорных стенах их устойчивость на сдвиг при воздействии горизонтального давления грунта обеспечивается в основном собственным весом стены.
В тонкостенных подпорных стенах их устойчивость обеспечивается собственным весом стены и весом грунта, вовлекаемого конструкцией стены в работу.
Как правило, массивные подпорные стены более материалоемки и более трудоемки в возведении, чем тонкостенные, и могут применяться при соответствующем технико-экономическом обосновании (например, при возведении их из местных материалов, отсутствии сборного железобетона и т.д.).
3.2. Массивные стены могут возводиться из монолитного бетона, сборных бетонных блоков, бутобетона и каменной кладки.
По форме поперечного сечения массивные стены могут быть:
с двумя вертикальными гранями (рис.1, а);
с вертикальной лицевой и наклонной тыльной гранью (рис.1, б),
с наклонной лицевой и вертикальной тыльной гранью (рис.1, в),
с двумя наклонными в сторону засыпки гранями (рис.1, г),
со ступенчатой тыльной гранью (рис.1, д),
с ломаной тыльной гранью (рис.1, е).
Рис.1. Массивные подпорные стены
3.3. Стены с наклонными гранями (переменного сечения, утончающиеся кверху) менее материалоемки, чем стены с двумя параллельными гранями.
При наличии наклонной в сторону от засыпки тыльной грани в работу подпорной стены включается масса грунта, расположенного над этой гранью. В стенах с двумя наклонными в сторону засыпки гранями интенсивность горизонтального давления грунта уменьшается, но возведение стен такого сечения является более сложным.
Что нужно знать о боковом давлении грунта на стены подвала
В процессе строительства дома на ранних этапах одной из главных проблем может оказаться невозможность преодоления бокового давления грунта на стены подвала, если конструкция предполагает наличие этого помещения. Игнорировать этот вопрос нельзя ни в коем случае, так как в будущем это может повлечь за собой не только деформацию здания, но и полное его разрушение. В особенности в зоне повышенного риска находятся все сооружения, предполагающие наличие более 1 этажа.
Чтобы справиться с возникшими сложностями, строители научились использовать специальную технологию и материалы, способные противостоять большим нагрузкам на стены. Когда происходит закладка фундамента, самым важным моментом можно назвать правильность расчётов сопротивления. Также стоит помнить, что чем глубже фундамент, тем сильнее будет давление на него.
Зависимость выбора метода возведения фундаментных стен от величины давления грунта
Чтобы повлиять на достоверность прочностных характеристик фундамента, перед возведением стен стоит тщательно исследовать почву в условиях трехосного сжатия. Это значит, что мастеру необходимо будет ознакомиться с методиками полевых определений информации о фильтрации, прочности и деформируемости. На основании полученных данных можно задумываться о том, какой метод возведения фундаментной стены окажется наиболее приемлемым и безопасным.
Чтобы избавиться от давления существует несколько техник для обустройства здания
Расчет давления грунта на стену подвала
В данном случае расчётная схема может предоставляться в виде балки с шарнирным опиранием в уровне перекрытий над подвальным помещением и защемлением на уровне подошвы фундамента. Говоря от треугольной нагрузке от бокового давления земли, она будет действовать не по всей площади балки и в дальнейшем создаст проблемы при заделке. Чтобы решить эту статистически неопределённую задачу, специалисты могут использовать метод из строительной механики.
Расчет толщины стен
Будущая толщина стены фундамента напрямую зависит от подобранных строительных материалов, а также глубины сооружения под землей. Если данная конструкция будет использоваться как жилая зона, высота должна быть не менее 2,5 м. Если здесь будут расположены технические помещения, достаточно использовать показатели до 2 м. Также не стоит забывать о том, что придется предусмотреть запасы на стяжку пола, а также отделочные работы.
В данном видео вы подробнее узнаете о расчётах стен подвала:
Определение толщины стен всегда производят с учетом уровня места расположения грунтовых вод. Если они протекают на большом расстоянии от будущего основания, специалисты рекомендуют придерживаться таких правил:
Технические характеристики материалов при строительстве стен фундамента
В зависимости от ситуации, при строительстве стены фундамента могут использоваться самые разные материалы. Каждый из них обязательно должен обладать надежностью и долговечностью. Независимо от того, какие показатели были получены после расчётов давления, лучше отдавать предпочтение самому надежному варианту. Для этих целей могут использоваться:
Бетон
Бетон очень часто используется как основной строительный материал не только для сооружения стен для фундамента, но и для перекрытий или других конструкции для дома. Он может выполнять заполняющую, изоляционную или отделочную функцию. Основное преимущество этого материала — надежность. В процессе строительства специалист может добиться необходимой прочности, что позволит сделать сооружение максимально долговечным.
Также не стоит забывать, что бетон не стоит больших денег, поэтому у хозяина дома будет возможность сэкономить. Именно поэтому это практически самый распространённый вариант для сооружения фундаментных стен.
Единственный риск, который можно отметить в этом случае, это возможное обрушение грунта в ходе работ, после чего он может перемешаться с бетоном, что повлияет на снижение прочности состава.
Бетон наиболее распространенный материал для строительства
Кирпич
Кирпич можно назвать одним из тех вариантов, который используется для сооружения стен для фундамента уже на протяжении долгого времени. Его использовали ещё задолго до того, как популярность начал набирать бетон. Кирпичи широко применялись благодаря лёгкости монтажа, при этом они очень прочные и надёжные.
Также не стоит забывать о том, что именно такие элементы позволяют выполнять не только стандартную кладку, но и различные узоры, которые подчеркнут оригинальность дизайна сооружения в целом. Но после того как будет выполнена кладка, не стоит забывать о том, что её необходимо защитить от сырости и влаги. Для этого можно использовать сразу несколько способов. Основными технологиями для этой разновидности работ можно считать следующее:
Если выполняется окрасочная гидроизоляция, необходимо использовать различные мастики, для которых основой выступают синтетические смолы или битум с наполнителем. Перед тем как приступить к работе, поверхность необходимо тщательно очистить и выровнять, чтобы на ней не было каких-либо шероховатостей, зазоров и выступов. Чтобы добиться идеального результата, специалисты обрабатывают кладку грунтовкой.
После того, как она полностью просохнет, можно наносить подготовленный материал. При оклеечной гидроизоляции работы выполняются с помощью следующих материалов:
Один из них наносится на изолированную поверхность с помощью битумных мастик. Говоря об одной из самых эффективных штукатурных гидроизоляций, можно выделить цементно-песчаный раствор. В эту смесь для усиления эффекта добавляют пенетрирующие материалы. Сам цемент не должен быть марки слабее М100.
Камни
Как и остальные варианты стен для фундамента, камень отличается своими недостатками и преимуществами. Этот вариант наиболее приемлем в тех случаях, когда хозяин дома собирается соорудить высокую несущую конструкцию. Способ наиболее выгоден за счёт следующих положительных сторон:
Несмотря на вышесказанное, камень имеет и некоторые недостатки. Одни из самых существенных — высокая цена, а также большие временные затраты. Если решено использовать именно этот материал, все необходимые расчёты и возведение конструкции из бута должны производиться только высококвалифицированными специалистами. Только в этом случае использование камня будет оправданным, так как если не учесть все, даже самые малейшие, нюансы, есть вероятность того, что со временем конструкция обрушится.
Камень имеет ряд преимуществ
Ещё одной положительной особенностью этого материала можно считать его гибкость при комбинировании с другими материалами. Если бюджет хозяина дома ограничен, то, чтобы удешевить сооружение и при этом не повлиять на его качество, для основы, которая будет находиться в земле, можно использовать бут, а в верхней части – кирпич. Но при этом такую технологию не стоит применять самостоятельно, так как здесь существует множество тонкостей, о которых знают только опытные специалисты.
Железобетонные блоки
Если для сооружения стен фундамента планируется использовать железобетонные блоки, такая конструкция окажется самой прочной и долговечной из всех вышеперечисленных. Это объясняется тем, что для изготовления таких элементов используется арматура и армирующие сетки, обеспечивающее прочное сцепление.
Железобетон можно назвать единственным материалом, который способен конкурировать с камнем и бетоном. В процессе выполнения монтажа стоит быть необычайно аккуратным, так как большой вес блоков при неаккуратном отношении к работе может привести к самым разным последствиям.