что означает пороговое значение уровня звукового давления
Звуковое давление и его уровни (spl)
В настоящее статье поговорим о том, что такое звуковое давление, рассмотрим понятие (импеданс) — удельное акустическое сопротивление среды. Также поговорим об уровнях звукового давления и интенсивности звука.
Чтобы лучше понимать о чём сегодня пойдёт речь, советую прочитать предыдущую статью по этой теме ( звуковые волны, виды, длина волны и скорость звука ).
Звуковое давление
Звуковая волна, как мы уже рассматривали в прошлой статье, распространяется в среде в виде волн сжатия и разряжения плотности.
В газах (в том числе и воздухе) плотность и давление связаны между собой:
p = RTp
А поскольку у волны имеются области сжатия и разряжения, то в первой области давление будут выше статического атмосферного. А в случае разряжения – ниже.
Вот как это выглядит:
Разность между мгновенным значением давления в данной точке среды и атмосферным давлением называется звуковым давлением.
Звуковое давление измеряется в паскалях (Па): 1 Па = 1 Н/м².
Наша слуховая система может определять очень большой диапазон разностей между мгновенным значением звукового давления и атмосферным.
На рисунке ниже представлено, различное звуковое давление от звуковых источников в децибелах (про децибелы подробнее читай далее):
Импеданс
Рассматривая звук, в прошлой статье ( читать ) мы выяснили, что звуковая волна зависит от частоты и амплитуды звукового давления. Если тело оказывает большое сопротивление приложенному звуковому давлению, то частицы приобретают малую скорость.
Поэтому импеданс – это удельное акустическое сопротивление среды. Представляет из себя отношение звукового давления к скорости колебаний частиц среды:
Z = p/v
Измеряется в (Па · с)/м или кг/(с · м²).
Удельное акустическое сопротивление для воздуха составляет (при температуре 20 С°) 413 кг/(с · м²). В металле, к примеру, оно составляет 47,7 × 10 кг/(с · м²). Так как в воздухе импеданс достаточно мал, то и излучаемая полезная энергия также мала.
Если рассматривать КПД (коэффициент полезного действия) музыкальных инструментов, голосового аппарата, громкоговорителей и т. п., то оно в воздухе находится в пределах 0,2-1%.
Энергетические параметры
Звуковая волна переносит энергию механических колебаний, значит она имеет энергетические параметры. Среди которых: акустическая энергия P (Дж); мощность W – энергия, переносимая в единицу времени (Вт); интенсивность I – количество энергии, проходящее в единицу времени через единицу площади, перпендикулярной к направлению распространения волны (Вт/м²); плотность – количество звуковой энергии в единице объёма (Дж/м²).
Уровни звукового давления (анг. SPL, sound pressure level)
Восприятие громкости человеком происходит не по линейному закону, пропорционально амплитуде колебаний, а по логарифмическому. Поэтому для определения параметров звука применяют логарифмические шкалы.
Человек различает огромный диапазон изменения звукового давления от тихого 2 × 10 ⁻⁵ Па до очень громкого 20 Па. Разница составляет 10⁶.
Использовать такую школу очень неудобно. Поэтому в измерительных приборах пользуются логарифмическими единицами – децибелами (дБ). Эта единица происходит от другой – бел, который равен десятикратному изменению интенсивности звука. Однако бел – единица крупная и неудобная для измерений. Поэтому применяется её десятая часть – децибел.
Уровень звукового давления определяется как:
L = 20 lg p/p₀
Например, если звуковое давление p = 2 Па, то уровень звукового давления равен: L = 20 lg (2 Па/(2 × 10 ⁻⁵) Па) = 20 lg (1 × 10⁺⁵) = 20 × 5 = 100 дБ.
Один децибел – примерно та наименьшая разница в громкости, которую человеческое ухо может почувствовать.
Полезно запомнить следующее. Изменение громкости в 3 дБ равно отношению 2:1. Поэтому если мы берем два одинаковых источника звука, т. е. удваиваем мощность, то громкость увеличиться на 3 дБ. Например, если к голосу присоединяется ещё один, равный по громкости, то уровень звука увеличится на 3 дБ. Если нужно ещё увеличить на 3 дБ, потребуется вдвое увеличить имеющийся состав.
Также можно обратиться к следующей таблице (в ней показано на сколько дБ нужно убавить, чтобы получить звучание в 2 раза тише, в 3 и т. д.):
1% | 10% | 25% | 33% | 50% | 100% |
1/100 (в 100 раз тише) | 1/10 (в 2 раза тише) | 1/1 | |||
-40дБ | -20дБ | -12 дБ | -10 дБ | — 6 дБ | 0 дБ |
Для определения суммарного уровня давления нескольких инструментов их никогда не складывают. Вначале необходимо рассчитать значение звукового давления каждого инструмента. Допустим играют две скрипки. Одна с уровнем 80 дБ, другая 86 дБ. У первой звуковое давление равно — 0,2 Па, второй — 0,4 Па.
Рассчитывается так: L = 20 lg p/p₀, значит 80 дБ = 20 lg p / (2 × 10 ⁻⁵), далее lg p / (2 × 10 ⁻⁵) = 4. Следовательно 10⁴ = p / (2 × 10 ⁻⁵), отсюда значение звукового давления будет p = 0,2 Па.
После этого определяется суммарное звуковое давление
В нашем случае суммарное давление равно p = 0, 447 Па. Затем определяется суммарный уровень звукового давления. Который равен 86,98 дБ.
Уровень интенсивности звука
Уровень интенсивности звука также измеряется в децибелах по формуле:
L₁ = 10 lg I/I₀
I₀ – нулевой уровень, равный 10⁻¹² Вт/м².
Мощность, напряжение, ток
Перечисленные электрические характеристики также часто приводятся в децибелах и имеют свои специальные обозначения. Приведём несколько примеров:
L dBm = 10 lg WВт/ 1мВт – уровень мощности отнесённый к 1 мВт
L dBv = 20 lg UB/1B – уровень напряжения, отнесённый к 1 В (Америка)
L dBv = 20 lg UB/0,775 B – уровень напряжения, отнесённый к 0,775 В (Европа)
Спасибо, что читаете New Style Sound ( подписаться на новости )
Что означает пороговое значение уровня звукового давления
ГОСТ Р ИСО 3744-2013
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
ОПРЕДЕЛЕНИЕ УРОВНЕЙ ЗВУКОВОЙ МОЩНОСТИ И ЗВУКОВОЙ ЭНЕРГИИ ИСТОЧНИКОВ ШУМА ПО ЗВУКОВОМУ ДАВЛЕНИЮ
Технический метод в существенно свободном звуковом поле над звукоотражающей плоскостью
Acoustics. Determination of sound power levels and sound energy levels of noise sources using sound pressure. Engineering method for an essentially free field over a reflecting plane
Дата введения 2014-12-01
Сведения о стандарте
1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 358 «Акустика»
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и действующие в этом качестве межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА
5 ВЗАМЕН ГОСТ Р 51401-99 (ИСО 3744-94)
Введение
Настоящий стандарт входит в серию стандартов (см. [2]-[6], ИСО 3745), устанавливающих методы определения уровней звуковой мощности и звуковой энергии источников шума, таких как машины, оборудование и их узлы. Выбор конкретного метода зависит от целей испытаний по определению уровня звуковой мощности (звуковой энергии) и от имеющегося в распоряжении испытательного оборудования. Общее руководство по выбору метода испытаний установлено в [1]. Стандарты [2]-[6], ИСО 3745 и настоящий стандарт дают только общие рекомендации по установке машин и условиям их работы при испытаниях. Подробные требования об этом должны быть установлены в испытательных кодах по шуму для машин разных видов.
Методы настоящего стандарта относятся к техническим методам по классификации ИСО 12001 и предполагают проведение измерений в условиях, близких к условиям свободного звукового поля над звукоотражающей плоскостью. Такие условия могут быть созданы в специально оборудованных лабораторных помещениях, промышленных помещениях или на площадках на открытом воздухе. В идеале испытуемый источник шума должен быть установлен на звукоотражающей плоскости в большом открытом пространстве. Если испытуемый источник при его применении устанавливают в цеховом помещении, то в результат измерения вносят поправку на отражение звука от близлежащих предметов, стен и потолка, а также поправку на фоновый шум в помещении.
Если задачи определения уровня звуковой мощности или звуковой энергии источника шума требуют более высокой точности, чем обеспечивает технический метод, то следует применить точные методы измерений, установленные [2], ИСО 3745 или [15]. К другим стандартам серии ([2]-[6], ИСО 3745) или к [15] следует обращаться при невозможности обеспечения условий измерений в соответствии с требованиями настоящего стандарта.
1 Область применения
1.1 Общие положения
1.2 Вид шума и источники шума
Настоящий стандарт распространяется на все виды шума (постоянный, непостоянный, флуктуирующий, единичные импульсы и др.) по классификации ИСО 12001.
Настоящий стандарт распространяется на источники шума всех видов и размеров (например, стационарное или медленно перемещающееся технологическое оборудование, установки, машины и их узлы), для которых может быть обеспечено соблюдение требований настоящего стандарта к условиям испытаний.
1.3 Испытательное пространство
Условия испытаний, соответствующие требованиям настоящего стандарта, могут быть созданы внутри помещений или на открытом воздухе и предполагают наличие одной или нескольких звукоотражающих плоскостей, на которые или вблизи которых устанавливают испытуемый источник шума. Идеальные условия испытаний для методов настоящего стандарта представляют собой открытое пространство без границ и отражающих поверхностей за исключением предусматриваемой методом звукоотражающей плоскости или плоскостей (таким условиям соответствует, например, аттестованная заглушенная камера со звукоотражающим полом). При отступлении условий испытаний от идеальных применяют соответствующие поправки (в пределах заданных ограничений).
1.4 Неопределенность измерения
В настоящем стандарте приведены сведения о неопределенности измерения корректированных по А уровней звуковой мощности (звуковой энергии) и в полосах частот. Неопределенность измерения соответствует установленной ИСО 12001 для технических методов измерений.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие стандарты*:
ИСО 5725 (все части) Точность (правильность и прецизионность) методов и результатов измерений [ISO 5725, Accuracy (trueness and precision) of measurement methods and results]
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями.
3.1 звуковое давление (sound pressure) : Разность между мгновенным и статическим давлениями воздушной среды.
3.2 уровень звукового давления (sound pressure level) : Десятикратный десятичный логарифм отношения квадрата звукового давления к квадрату опорного звукового давления ( 20 мкПа), выраженный в децибелах (дБ) по формуле
. (1)
3.3 эквивалентный уровень звукового давления (time-averaged sound pressure level) : Десятикратный десятичный логарифм отношения усредненного на заданном временном интервале (с началом и окончанием ) квадрата звукового давления к квадрату опорного звукового давления ( 20 мкПа), выраженный в децибелах (дБ) по формуле
. (2)
3.4 уровень экспозиции однократного шумового процесса (single event time-integrated sound pressure level) : Десятикратный десятичный логарифм отношения интегрированного на заданном временном интервале (с началом и окончанием ) квадрата звукового давления отдельного шумового события (звукового импульса или переходного процесса) к опорному значению дозы шума [ (20 мкПа) с =4·10 Па с], выраженный в децибелах (дБ) по формуле
. (3)
3.5 продолжительность измерений (measurement time interval) : Период, включающий в себя часть операционного цикла или несколько операционных циклов источника шума, в течение которого проводят измерения эквивалентного уровня звукового давления.
Порог звукового давления
Смотреть что такое «Порог звукового давления» в других словарях:
Уровень звукового давления — Звуковое давление не следует путать с давлением звука. Звуковое давление переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны. Единица измерения паскаль (Па). Мгновенное значение звукового… … Википедия
МИНИМУМ ЗВУКОВОГО ДАВЛЕНИЯ — Минимальное давление, измеряемое у барабанной перепонки, которое вызывает едва слышимый звук. См. минимальное звуковое поле и порог чувствительности … Толковый словарь по психологии
ГОСТ Р ИСО 389-1-2011: Государственная система обеспечения единства измерений. Акустика. Опорный нуль для калибровки аудиометрической аппаратуры. Часть 1. Опорные эквивалентные пороговые уровни звукового давления чистых тонов для прижимных телефонов — Терминология ГОСТ Р ИСО 389 1 2011: Государственная система обеспечения единства измерений. Акустика. Опорный нуль для калибровки аудиометрической аппаратуры. Часть 1. Опорные эквивалентные пороговые уровни звукового давления чистых тонов для… … Словарь-справочник терминов нормативно-технической документации
опорный эквивалентный пороговый уровень звукового давления (ЭПЗ) — 3.7 опорный эквивалентный пороговый уровень звукового давления (ЭПЗ) 1)[reference equivalent threshold sound pressure level (RETSPL)]: Наиболее вероятное значение эквивалентного порогового уровня звукового давления достаточно большого числа людей … Словарь-справочник терминов нормативно-технической документации
Порог слышимости — Порог слышимости минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину порога слышимости принято выражать в децибелах, принимая за нулевой уровень звукового давления… … Википедия
ПОРОГ СЛЫШИМОСТИ — минимальная величина звукового давления, при к ром звук данной частоты может быть ещё воспринят ухом человека. Величину П. с. принято выражать в децибелах, принимая за нулевой уровень звукового давления 2•10 5 Па на частоте 1 кГц (для плоской… … Физическая энциклопедия
ПОРОГ БОЛЕВОГО ОЩУЩЕНИЯ — слуховой, величина звукового давления, при к ром в ухе возникает ощущение боли. Болевым ощущением часто определяют верх. границу динамич. диапазона слышимости человека. П. б. о. для синусоидальных сигналов равен в среднем 140 дБ по отношению к… … Физическая энциклопедия
порог слышимости — Минимальное значение уровня звукового давления простого звука, который вызывает у слушателя звуковое восприятие [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики шум, звук EN threshold of audibility DE… … Справочник технического переводчика
Порог отнесения — Минимальный уровень звукового давления, вызывающий слуховую реакцию у испытателя без применения про тивошума Источник … Словарь-справочник терминов нормативно-технической документации
ПОРОГ — уровень, превышение которого вызывает относительно резкое изменение свойства или характера явления, а также функции в определённой относительно узкой области условий или координат. Различают П.: 1) болевой максимально допустимое звуковое давление … Большая политехническая энциклопедия
Что означает пороговое значение уровня звукового давления
Московский энергетический институт (ТУ)
Кафедра инженерной экологии и охраны труда
Учебно-методический комплекс
Справки по телефону: 362-71-32; e-mail: NovikovSG@mpei.ru доцент Новиков С.Г.
1. Звук. Основные характеристики звукового поля. Распространение звука
С. Уровни акустических величин
Стандартным порогом слышимости называют эффективное значение звукового давления (интенсивности), создаваемого гармоническим колебанием с частотой f = 1000 Гц, едва слышимым человеком со средней чувствительностью слуха.
С учетом психофизического восприятия звука человеком для характеристики значений звукового давления pзв и интенсивности I были введены логарифмические величины – уровн и L (с соответствующим индексом), выраженные в безразмерных единицах – децибелах, дБ, названных в честь Грейма – Бела (увеличение интенсивности звука в 10 раз соответствует 1 Белу (Б) – 1Б = 10 дБ):
По аналогии были введены также и уровни звуковой мощности
(3.6, а)
Критерий уровня шума при выборе систем кондиционирования
Шум — это «побочный продукт» работы кондиционера, но естественно, чем тише работает кондиционер, тем лучше. Поэтому усилия всех производителей систем комфортного кондиционирования направлены на создание бесшумных агрегатов. Но дело не только в конструкции или марке кондиционера. На интенсивность шума в значительной степени влияют окружающие условия, место и вариант установки. Попробуем определить факторы, влияющие на уровень шума от систем кондиционирования.
Табл. 1. Классификация шума с помощью частотных полос (октав)
Табл. 2. Классификация шума с помощью трех категорий (фильтров)
Табл. 3. Требования к максимальному уровню шума в различных помещениях
Рис. 1. Кривые NC-показателей чувствительности человеческого уха и уровень звукового давления модели AS9 VRF-системы GENERAL серии J
Рис. 2. Уровень звукового давления (дБА) для внутренних блоков настенного типа VRF-системы GENERAL серии J
Рис. 3. Уровень звукового давления для наружного блока AO90R VRF-системы GENERAL серии S
Рис. 4. График определения суммарного уровня шума от двух источников
Вспомним основы физики процессов воникновения шума. Шум — это колебания воздушной среды, несущие в себе определенную величину кинетической энергии или звуковой мощности (W, Вт). Поэтому для измерения уровня шума часто используют такую величину, как уровень звуковой мощности, измеряемой по отношению к пороговой звуковой мощности (Wп, 10–12 Вт), которую может услышать человек.
Для расчетов используется следующая формула: Lw = 10 log WWп. (1) С другой стороны, шум — это колебания воздушной среды, воспринимаемые человеческим ухом как происходящие в звуковой волне периодические изменения давления (сжатия и разряжения), выраженные в паскалях. Величина, оценивающая уровень шума по давлению, носит название уровень звукового давления и измеряется также по отношению к пороговому звуковому давлению (2,1–5,0 Па): Lр = 10 log ррП. (2) Полученные по формулам (1, 2) величины измеряются в децибелах (дБ).
В каталогах и паспортах фирм-изготовителей климатического оборудования указываются различные значения уровня шума: одни указывают уровень звукового давления, другие — уровень звуковой мощности. Потребителям необходимо обращать на это внимание при выборе того или иного вида оборудования. Фактически шум представляет собой совокупность звуковых волн различной частоты.
Человеческое ухо воспринимает частоты от 20 до 16 000 Гц. На практике удобно при описании характеристик шума использовать частотные полосы. Диапазон частот, воспринимаемых человеческим ухом, разбит на 10 октавных полос (частота октавы изменяется от одной частоты до удвоенной частоты, например, от 320 до 640 Гц). Эти октавные полосы обозначаются средней частотой (табл. 1).
Шумовыми характеристиками технологического и инженерного оборудования являются уровни звуковой мощности Lw, дБ, в восьми октавных полосах частот со среднегеометрическими частотами 63–8000 Гц (октавные уровни звуковой мощности). Ухо человека по-разному реагирует на звуки различной частоты. Это означает, что при одинаковом уровне звуковой мощности мы лучше слышим высокочастотный звук, чем звук с низкой частотой.
То есть интенсивность звукового ощущения сильно меняется в зависимости от частоты звука. За базовые приняты интенсивность звука с частотой 1000 Гц и уровень звукового давления 40 дБ. Для того чтобы человек почувствовал такой же уровень воздействия звука с частотой, например, 31,5 Гц, необходимо увеличить уровень звукового давления до 75 дБ. Для перехода от физических характеристик шума к субъективно воспринимаемым (физиологическим характеристикам) используется экспериментальный метод взвешивания.
В этом случае шумовые характеристики классифицируются с использованием трех категорий, или трех фильтров (табл. 2). На практике наиболее часто применяется для систем кондиционирования фильтр А. Следует помнить, что уровни шума в единицах дБ, или дБл, соответствуют уровню шума без взвешивания, а уровни шума в единицах дБА, дБВ, дБС — уровню шума со взвешиванием (А, В, или С). ISO разработаны кривые NR-показателей чувствительности человеческого уха. Они определяют номинальное значение при частоте 1000 Гц. Используется также коэффициент шума NC, который аналогичен NR, но соответствует номинальному значению 1500 Гц (рис. 1).
Нормативные требования к уровню шума от систем кондиционирования
Системы кондиционирования воздуха максимально приближены к человеку, находятся рядом с ним во время его работы и отдыха. Поэтому такой немаловажный фактор, как шум от них, оказывает колоссальное воздействие на состояние эмоционального и физического комфорта человека. Неудивительно, что акустические характеристики окружающей человека среды, в том числе шум от систем кондиционирования воздуха, нормируются (табл. 3) [1].
Как видно из табл. 3, значения максимального уровня шума значительно отличаются по времени (день и ночь). В дневное время использования систем кондиционирования воздуха наблюдаются максимальные теплоизбытки в большинстве помещений. Поэтому расчетная (максимальная) мощность кондиционера подбирается исходя из дневных теплоизбытков.
С точки зрения теплотехнических характеристик кондиционера максимальная мощность охлаждения наблюдается при максимальных скоростях вращения вентилятора внутреннего блока. Следовательно, расчетным режимом в дневное время является режим максимальной скорости вращения вентилятора внутреннего блока. Чем больше скорость вентилятора, тем выше уровень шума от кондиционера, но тем больше и его производительность по холоду. С другой стороны, в ночное время в спальнях гостиниц и квартир теплоизбытки значительно меньше, главным образом из-за отсутствия солнечной радиации. Поэтому для поддержания требуемой температуры достаточно минимальной производительности кондиционера на низкой скорости вентилятора внутреннего блока.
При определении максимального уровня шума от систем кондиционирования воздуха необходимо учитывать, что его установка непосредственно в обслуживаемом помещении снижает этот показатель на 5 дБА [2]. Однако, в документе [1] таких требований нет. Если сравнить уровень шума от настенных моделей VRF-системы GENERAL серии J и требования к максимальному уровню шума в различных помещениях (табл. 3), то можно отметить, что внутренние блоки укладываются в требования по шуму для любых типов помещений, кроме жилых комнат квартир и номеров гостиниц в ночной период.
Так как данные по уровню шума для настенных моделей различных производителей климатического оборудования близки, можно посоветовать применять канальные внутренние блоки при кондиционировании помещений с высокими акустическими требованиями. Канальная модель позволяет вынести источник шума (внутренний блок) за пределы помещения. Это, во-первых, позволяет уменьшить уровень шума в обслуживаемом помещении, во-вторых, исключает необходимость снижать максимальный показатель уровня шума на 5 дБА.
Для наружных блоков требования к уровню шума несколько ниже, но тоже критичны. Территории жилых зданий ограничены уровнем шума в дневное время 55 дБА, а в ночное время 45 дБА. Максимальный уровень шума в расчетном режиме для наружного блока VRFсистемы GENERAL серии S составляет 55 дБА, что соответствует требованиям. В ночной период за счет снижения скорости вращения вентилятора уровень шума наружного блока значительно снижается: при загрузке около 40% не превышает требуемого значения для территорий, непосредственно прилегающих к жилым зданиям.
Определение суммарного уровня шума от двух и более источников
Для практических расчетов полного уровня шума, создаваемого отдельными источниками, используется следующий график (рис. 4). Чтобы определить уровень шума от двух источников по данному графику, необходимо:
Пример 1.
Необходимо рассмотреть уровень шума двух вариантов кондиционирования помещений. Первый вариант — кондиционирование помещения одним большим кондиционером. Второй вариант — кондиционирование двумя маленькими блоками той же суммарной мощности. Уровень звукового давления настенной модели AS24 мощностью охлаждения 6,9 кВт составляет 45 дБА (высокая скорость вентилятора). Можно кондиционировать помещение с помощью двух кондиционеров AS12 мощностью охлаждения каждого 3,5 кВт (рис. 2).
Уровень звукового давления одного кондиционера составляет 39 дБА (высокая скорость вентилятора). Разница между уровнями шума двух одинаковых кондиционеров равна нулю. Следовательно, к максимальному уровню шума нужно прибавить 3 дБА: 39 + 3 = 42 дБА. Отсюда вывод: две небольшие модели в данном случае будут шуметь меньше, чем одна большая, при одинаковой мощности охлаждения.
Пример 2.
Определить уровень звукового давления от десяти наружных блоков АО90R при их максимальной загрузке. Уровень звукового давления от одного составляет 55 дБА. Уровень шума от двух наружных блоков равен: Д = 0; 55 + 3 = 58 дБА. Уровень шума от четырех наружных блоков равен: Д = 0; 58 + 3 = 61 дБА. Уровень шума от восьми наружных блоков равен: Д = 0; 61 + 3 = 64 дБА. Уровень шума от десяти наружных блоков равен: Д = 6; 64 + 1 = 65 дБА. Уровень звукового давления от десяти наружных блоков АО90R GENERAL составляет 65 дБА.