что означает правило согласно которому определение должно быть соразмерным
Основные правила определений
Формулируя определения, придерживаются ряда правил. Назовем основные.
1. Определение должно быть соразмерным. Это означает, что объемы определяемого и определяющего понятий должны совпадать. Это правило вытекает из того, что определяемое и определяющее понятия взаимозаменяемы.
Например, несоразмерно такое определение квадрата: «Квадратом называется четырехугольник, у которого все стороны равны». Действительно, объем определяемого понятия – множество квадратов. Объем определяющего понятия – множество четырехугольников, все стороны которых равны, а это множество ромбов. Но не всякий ромб есть квадрат, т.е. объемы определяемого и определяющего понятия не совпадают, и, следовательно, данное определение несоразмерно.
2. В определении (или их системе) не должно быть порочного круга.
Это означает, что нельзя определять понятие через само себя (в определяющем не должно содержаться определяемого термина) или определять его через другое, которое, в свою очередь, определять через него.
Например, содержат порочный круг определения: «Равные треугольники – это треугольники, которые равны», «Касательная к окружности – это прямая, которая касается окружности».
Так как в математике рассматривают не просто отдельные понятия, а их систему, то данное правило запрещает порочный круг и в системе определений. В соответствии с ним нельзя определять понятие а, выбрав в качестве родового понятия с, а понятие с – через понятие а.
Например, если определить окружность как границу круга, а круг как часть плоскости, ограниченную окружностью, то мы будем иметь порочный круг в определениях данных понятий.
3. Определение должно быть ясным. Это на первый взгляд очевидное правило, но означает оно многое. Прежде всего, требуется, чтобы
значения терминов, входящих в определяющее понятие, были известны к моменту введения определения нового понятия.
Например, нельзя определять прямоугольник как параллелограмм с прямым углом, если понятие «параллелограмм» еще не рассмотрено.
К условиям ясности определения относят также рекомендацию включать в видовое отличие лишь столько свойств, сколько необходимо и достаточно для выделения определяемых объектов из объема родового понятия.
Рассмотрим, например, такое определение прямоугольника: «Прямоугольником называется четырехугольник, у которого все углы прямые и противоположные стороны равны».
Нетрудно убедиться в том, что это определение соразмерное и в нем нет порочного круга. Но можно доказать, что свойство «в прямоугольнике противоположные стороны равны» вытекает из свойства «в прямоугольнике все углы прямые». В этом случае считают, что в данном определении прямоугольника второе свойство избыточное.
Таким образом, чтобы определение было ясным, желательно, чтобы оно не содержало избыточных свойств в определяющей части, т.е. таких свойств, которые могут быть выведены из других, включенных в это определение. Однако иногда для простоты изложения это правило нарушают.
Для обеспечения ясности определения важно также наличие понятия, родового по отношению к определяемому. Пропуск родового понятия делает определение несоразмерным. Неприемлемо, например, такое определение квадрата: «Квадрат – это когда все стороны равны».
К сказанному следует добавить, что, формулируя определение, надо стремиться в определяющем указывать не просто родовое по отношению к определяемому понятие, а ближайшее. Это часто позволяет сократить количество свойств, включаемых в видовое отличие.
Например, если для определения квадрата в качестве родового выбрать понятие «четырехугольник», то тогда надо будет включать в видовое отличие два свойства: «иметь все прямые углы» и «иметь все равные стороны». В результате получим определение: «Квадратом называется четырехугольник, у которого все углы прямые и все стороны равны».
Если же в качестве родового выбрать ближайшее для квадрата родовое понятие – прямоугольник, то получим более короткое определение квадрата: «Квадратом называется прямоугольник, у которого все стороны равны».
4. Одно и то же понятие определить через род и видовое отличие, соблюдая сформулированные выше правила, можно по-разному. Так, квадрат можно определить как:
а) прямоугольник, у которого соседние стороны равны;
б) прямоугольник, у которого диагонали взаимно перпендикулярны;
в) ромб, у которого есть прямой угол;
г) параллелограмм, у которого все стороны равны, а углы прямые.
Различные определения одного и того же понятия возможны потому, что из большого числа свойств, входящих в содержание понятия, в определение включаются только некоторые. И когда из возможных определений выбирают одно, исходят из того, какое из них проще и целесообразнее для дальнейшего построения теории.
Если же одному и тому же понятию даются, например, два разных определения, то необходимо доказывать их равносильность, т.е. убеждаться в том, что из свойств, включенных в одно определение, вытекают свойства, включенные в другое, и наоборот.
Завершая рассмотрение определений понятий через род и видовое отличие, назовем ту последовательность действий, которую мы должны соблюдать, если хотим воспроизвести определение знакомого понятия или построить определение нового:
1. Назвать определяемое понятие (термин).
2. Указать ближайшее родовое (по отношению к определяемому) понятие.
3. Перечислить свойства, выделяющие определяемые объекты из объема родового, т.е. сформулировать видовое отличие.
4. Проверить, выполнены ли правила определения понятия (соразмерно ли оно, нет ли порочного круга и т.д.).
Логическая операция определения понятий. Виды определений
Логическая операция определения понятий
Определение понятия – это логическая операция, раскрывающая содержание понятия посредством его отождествления с другим понятием, содержание и объем которого известны.
В структуре определения выделяют три элемента:
Определяемое понятие (сокращенно Dfd) – это понятие, объем которого необходимо раскрыть.
Определяющее понятие (сокращенно Dfn) – это понятие, через которое дается определение.
Видовое отличие (С) – это признак, отличающий видовое понятие от родового.
Последовательность определения понятия:
Необходимо дать определение понятию «кража». Ближайшим родом является хищение. Видовым отличием – тайное. Значит, кража – это тайное хищение чужого имущества.
Правила определения и типичные ошибки
Основные правила определения понятий:
1. Определение должно быть соразмерным
Объем определяемого понятия должен быть равен объему определяющего понятия, то есть definiendum и definiens должны быть тождественны.
Типичные ошибки, связанные с нарушением этого правила, следующие:
Ошибка слишком широкого определения, когда определяющее понятие по объему оказывается шире, чем определяемое понятие.
Например: «Студент – это учащийся», «Вуз – это учебное заведение». В данных определениях определяющие понятия значительно шире по объему, чем определяемые, поскольку понятие «учащиеся» включает в себя не только студентов, но и школьников, аспирантов; а источники света, помимо лампы, вообще трудно перечислить из-за их многочисленности, это и электрические фонари, свечи и спички, Солнце и звезды и т. д.
Ошибка слишком узкого определения, когда определяющее понятие по объему меньше, чем определяемое понятие.
Например: «Треугольник есть плоская геометрическая фигура с тремя равными сторонами», это определение исключает из числа треугольников разносторонние треугольники.
Например: «Наказание – есть мера государственного принуждения, назначаемая по приговору суда лицу, совершившему преступление в сфере экономики».
С одной стороны, это слишком узкое определение, поскольку преступления совершаются не только в экономической сфере. С другой стороны, это определение является слишком узким, поскольку, если родитель поставил ребенка в угол, он его наказал, и государство здесь ни при чем.
Поэтому, чтобы исправить ошибку в данном определении, необходимо:
2. Недопустимость тавтологии и «порочного круга» в определении.
Понятия, входящие в определяющую часть, сами должны определяться без помощи определяемого понятия.
Тавтология – это ошибка, носящая очевидный характер, когда в определяющем понятии повторяется определяемое понятие, то есть происходит определения того же через то же самое.
Например: «Сканер есть прибор, осуществляющий сканирование», «Фильтрование – процесс разделения с помощью фильтра», «Мошенник – это человек¸ занимающийся мошенничеством». Если мы не знаем, что такое мошенничество, мы из определения так и не узнаем, чем занимается мошенник.
Напротив, «порочный круг» в определении не носит очевидного характера, а обнаруживается лишь тогда, когда необходимо дать определение и определяемому (Dfd), и определяющему (Dfn) понятиям.
Например: в определении «Вращение есть движение вокруг своей оси» будет допущена ошибка круга, если понятие «ось» само определяется через понятие «вращение»: ось – это прямая, вокруг которой происходит вращение.
В одном из произведений Мольера есть пример подобной ошибки: «Опиум усыпляет потому, что является снотворным. А снотворное он потому, что усыпляет».
3. Правило ясности
Определение должно быть четким и ясным, то есть смысл, содержание всех понятий, входящих в определяющую часть, должен быть ясен и их объемы должны быть достаточно четко ограничены.
Несоблюдение данного правила ведет к ошибке, носящей название «определение неизвестного через неизвестное».
Требование кажется простым, однако его не всегда легко выполнить, поскольку слова нашего естественного языка часто имеют весьма расплывчатые значения, и мы порой склонны принимать за определения метафоры, сравнения и иные риторические фигуры. Например, не являются определениями следующие утверждения: «Архитектура – застывшая музыка», «Быстрота – мать успеха», «Пехота – царица полей», «Хлеб – всему голова» и т. п., поскольку они лишь образно выражают нашу мысль, но не раскрывают содержания определяемых понятий.
4. Желательно, чтобы определение не содержало в себе отрицание.
Определение должно нести информацию, отрицательные же определения содержат ничтожно малую информацию.
Так, мы не дадим определение понятию «ломать», сказав, что «ломать – не строить». Мы лишь отграничим все то, что входит в понятие «ломать», от того, что входит в понятие «строить».
Почему формулировка данного правила такая мягкая – «желательно», а не обязательно?
Во-первых, без отрицания в определении невозможно обойтись, если дается определение отрицательному понятию. Например, «несовместимые понятия – это понятия, не имеющие общих элементов».
Во-вторых, иногда это оправданно с точки зрения запоминания и использования. Вспомните определение параллельных линий. Это линии, которые на всем своем протяжении ни разу не пересекаются. Данное определение содержит отрицание, однако его легко понять и запомнить. Попытки же дать определение параллельным линиям, минуя отрицание, привели к загромождению слов и утрате понимания.
Виды определений
Виды явных определений:
Как мы видим, соответствующие реальные и номинальные определения обычно легко преобразуются друг в друга путем добавления слова «называется». Само название номинального определения говорит о том, что термин вводится впервые – дается имя предмету. По большому счету, номинальные (definitio nominis – определение имени) определения представляют собой соглашения о значениях тех или иных слов – соглашения, которые можно изменять, уточнять, принимать или отвергать, поэтому следует все определения рассматривать как наши произвольные установления, к которым понятие истины неприменимо. Поэтому и говорят, что об определениях не спорят – их принимают или отвергают. Для частных определений (если предварительно уведомлены другие) можно называть что угодно как угодно.
Разнообразные энциклопедии содержат реальные определения, характеризующие предметы, а толковые словари дают номинальные определения, говорящие о том, в каком смысле употребляется в современном языке то или иное слово.
Определение имен произвольно, определение вещи – нет. Определения вещей нуждаются в обосновании, и их можно оспаривать.
Логика. Учебник для средней школы.
Глава IV
ОПРЕДЕЛЕНИЕ И ДЕЛЕНИЕ ПОНЯТИЯ
§ 1. Сущность определения понятия
Определение понятия есть такое логическое действие, в процессе которого раскрывается содержание понятия.
Раскрыть содержание понятия — это значит указать его существенные признаки.
Определением понятия называется также результат указанного действия.
Каждый предмет имеет бесконечное число признаков, и пытаться указать все признаки предмета невозможно. Определение содержит в себе лишь такие признаки, которые, являясь существенными, отграничивают понятие от других понятий.
В определении выражается в сжатой форме основное знание о предметах. Следовательно, определение понятия есть определение тех предметов, на которые распространяется данное понятие. Определяя, например, понятие «трактор», мы определяем те тракторы, которые имеются в действительности.
Определим, например, понятие «ромб».
Для этого прежде всего укажем ближайший род: ромб — это параллелограмм. Но, кроме ромба, есть и другие виды параллелограммов. Поэтому необходимо ещё указать в определении такой признак ромба, который отличает его от других видов параллелограммов, т. е. указать видовое отличие: равенство сторон. В результате получается: ромб — это параллелограмм, все стороны которого равны друг другу.
Это и будет определение понятия «ромб».
Так, в нашем примере понятие «ромб» было определяемым, а понятие «параллелограмм, все стороны которого равны друг другу» было определяющим. Определяющее понятие указывает на ближайший род определяемого и на его видовое отличие.
Состав определения схематически можно изобразить таким образом:
«вид» есть «род и видовое отличие».
Например: «газогенератор (вид) есть аппарат (род), превращающий твёрдое топливо в газообразное» (видовое отличие).
Видовое отличие не всегда выражается одним признаком. Таких признаков может быть несколько. Совокупность их представляет видовое отличие.
Например: «Антарктика — это часть света, включающая материк Антарктиду и окружающие моря и острова». В этом определении родовым понятием будет «часть света», а видовое отличие выражено тремя признаками: «включающая материк Антарктиду», «включающая окружающие моря», «включающая окружающие острова».
В этом определении указаны все необходимые признаки нации. Ближайший род в этом определении — «общность людей», а все остальные признаки, отличающие нацию от коллектива, общественных организаций, класса и др., являются видовым отличием. Все эти признаки выражают коренные свойства нации.
Определив нацию, И. В. Сталин далее пишет:
«Необходимо подчеркнуть, что ни один из указанных признаков, взятый в отдельности, недостаточен для определения нации. Более того: достаточно отсутствия хотя бы одного из этих признаков, чтобы нация перестала быть нацией.
Только наличие всех признаков, взятых вместе, даёт нам нацию».
§ 2. Правила определения
Чтобы определить понятие, необходимо, конечно, прежде всего иметь знание о существенных признаках тех предметов, на которые это понятие распространяется. Человек, который не знает, например, что такое «материализм», не сможет определить понятие «материализм», если даже он хорошо усвоил все правила определения. Однако, зная о материализме, но не зная способов определения, легко можно допустить ошибку в определении.
Существует четыре правила определения.
1. Определение должно быть соразмерным.
Это значит, что определяемое и определяющее понятия должны быть равны по объёму.
Возьмём для примера определение понятия «квадрат»: «квадрат есть равносторонний прямоугольник».
Это определение соразмерное, так как определяемое понятие «квадрат» и определяющее «квадрат есть равносторонний прямоугольник» являются тождественными понятиями, т. е. имеют один и тот же объём.
Но если бы мы, определяя понятие «квадрат», ограничились указанием одного родового признака «квадрат есть прямоугольник», то такое определение было бы слишком широким по объёму; кроме квадратов, есть и другие прямоугольники, поэтому понятия «квадрат» и «прямоугольник» не тождественны.
Слишком широкое определение получится и в том случае, если в качестве видового отличия приведено недостаточное количество признаков. Возьмём следующее определение: «Конденсатор есть прибор, служащий для накопления электрической энергии».
Хотя в этом определении указаны и род, и видовое отличие, но с помощью такого определения мы не отличим конденсатора от аккумулятора.
Необходимо в качестве видового отличия указать ещё на некоторые признаки, характерные только для конденсатора.
Итак, слишком широкое определение есть неточное, неправильное определение.
Неточным, неправильным является и слишком узкое определение.
Например, в определении «линза есть оптическое стекло, ограниченное двумя выпуклыми поверхностями» указаны род и видовое отличие, однако такое определение относится не ко всякой линзе, а только к разновидности линз — к лупе. Следовательно, объём определяющего понятия уже объёма определяемого. Правило соразмерности нарушено — определение линзы дано неверно.
Слишком узким будет и такое определение: «Астрономия есть наука о звёздах». В этом определении видовое отличие не исчерпывает предмета науки астрономии, так как астрономия есть наука не только о звёздах, но и о всех небесных телах.
2. Определение не должно делать круга.
Нарушение этого правила состоит в том, что в качестве определяющего берётся такое понятие, которое само можно понять только посредством определяемого. Например: «Что такое противоречие в рассуждении? Это такое противоречие, которое представляет собой нарушение логичности мышления». Такое определение — пример круга в определении, так как «нарушение логичности мышления» не может быть понято без указания на «противоречие в рассуждении».
Ошибка «круг в определении» иногда принимает форму тавтологии.
Возьмём такой пример:
«Существенные признаки предмета — это такие признаки, которые являются существенными для предмета». Или: «Смешное — это то, что вызывает смех».
3. Определение не должно быть отрицательным.
Определение должно указывать на то, что представляет собой предмет, а не на то, чем не является предмет. Поэтому такое определение, как «свет есть отсутствие темноты», не может дать никакого знания о природе света.
Однако в некоторых случаях определение может содержать в себе отрицание. Например, в определении инертных газов (аргон, неон и др.) указывается их химическая неактивность.
Отрицательные определения употребляются также в тех случаях, когда определяемым является отрицательное понятие. Например: «Иррациональное число — это число, которое несоизмеримо ни с единицей, ни с её частями».
4. Определение должно быть ясным, четким, не допускающим двусмысленных или метафорических выражений.
К числу последних выражений относятся: «архитектура есть окаменевшая музыка», «лев есть царь зверей» и т. д.
Иногда определение не получает необходимой ясности и чёткости, становится громоздким оттого, что в него включаются лишние слова, хотя указанное выше правило соразмерности может при этом не нарушаться.
Например, совершенно ненужной была бы последняя часть фразы (начиная со слова «которое») в следующем определении: «Магнитная индукция — это возбуждение магнетизма в кусках железа или стали, введённых в магнитное поле, которое вызывает в них явление магнетизма, т. е. намагничивает их». Определение получилось громоздким и запутанным, так как в него включены лишние слова.
Вполне достаточно было бы определить магнитную индукцию как «возбуждение магнетизма в кусках железа или стали, введённых в магнитное поле». Конечно, это определение не исчерпывает всего содержания понятия магнитной индукции. Но, во-первых, не требуется, чтобы всякое определение всегда содержало в себе все признаки понятия, а, во-вторых, лишние слова (в неправильном определении) нашего знания расширить не могут.
Определение должно быть точным, ясным и по возможности настолько кратким, насколько краткость определения не мешает необходимой его полноте.
§ 3. Генетическое определение
Слово «генезис» означает «происхождение».
Генетическое определение — это такой вид определения, который указывает на происхождение определяемого предмета.
«Шар есть геометрическое тело, образованное вращением круга около его диаметра».
Другие примеры: «Окружность — это замкнутая кривая, которая образуется движением на плоскости точки, сохраняющей равное расстояние от центра». Или:
«Окружность — это замкнутая кривая, все точки которой находятся на равном расстоянии от центра». Первое определение генетическое, второе — негенетическое.
Таким образом, генетическое определение также содержит в себе указание на ближайший род и видовое отличие. Оно подчиняется всем правилам негенетического определения и отличается от него лишь характером своего содержания.
Генетическое определение применяется в тех случаях, когда бывает необходимо указать на происхождение интересующего нас предмета.
§ 4. Номинальное определение
Например: «Генезис — это значит происхождение, источник».
Номинальное определение не представляет собой определения понятий, следовательно, предметов, отражением которых являются понятия. Номинальное определение лишь по форме может иногда совпадать с определением понятий. Так как оно не раскрывает содержания понятия, а только выясняет смысл слова, то важно уметь отличать определение понятия от номинального определения, чтобы не подменять одно другим.
Сравним два вида определений:
1) Номинальное определение: «Атом — значит неделимый».
2) Определение понятия: «Атом — это мельчайшая частица вещества, состоящая из ядра и электронов».
В первом определении лишь разъясняется значение слова. Это значение не соответствует современному знанию об атомах, оно устарело. Во втором определении раскрываются существенные признаки атома.
Номинальные определения бывают необходимы в известных случаях, особенно в отношении заимствованных слов, однако они не могут заменить собой определений понятий.
Глава V. Об определении
Цель определения. Когда мы произносим какое-либо слово, соответствующее известному понятию, и хотим сделать его понятным для всех, то мы должны раскрыть содержание понятия, соответствующего указанному слову, а так как содержанием понятия называется совокупность его признаков, то раскрытие содержания понятия можно обозначить как перечисление признаков, присущих данному понятию. Какое-либо понятие A содержит признаки a, b, c, d; если мы перечислим эти признаки, то тем самым точно обозначим, раскроем содержание понятия A; это значит, другими словами, что мы определим его.
Следует заметить, что не все понятия могут быть определены. Понятия по своему содержанию бывают весьма различны: содержание одних понятий больше, других – меньше. Такие понятия, которые имеют сложное содержание, т.е. такие, которые имеют много признаков, могут быть определены. Но есть понятия, которые имеют настолько простое содержание, что не могут быть определены, потому что, как было сказано, для определения необходимо раскрытие содержания понятия; если же содержание понятия не может быть раскрыто, то оно не может быть и определено. Такие понятия называются простыми. Например, понятие «пунцовый цвет» не подлежит определению: цвет этот нужно видеть, чтобы знать, что он такое. Всё же определения, которые мы попытались бы дать в данном случае, были бы ложными в логическом отношении. Точно так же определять, что такое тон известной высоты, бесполезно; это усваивается, понимается непосредственным восприятием этого тона. Сюда же относятся такие понятия, как, например, понятия «равенство», «тождество», «тяжесть», «протяжение», «сознание» и т.п. Точно так же не могут быть определяемы индивидуальные понятия, потому что при определении их пришлось бы перечислить бесконечное множество признаков. Например: «этот бриллиант».
Итак, определить то или иное понятие значит перечислить его признаки. Но это представляется иногда задачей трудной, потому что количество признаков того или другого понятия может быть очень велико; поэтому перечислить даже большинство этих признаков не окажется возможным. Если бы, например, определяя понятие «прямоугольник», мы сказали, что прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми линиями, четырёхугольная, с прямыми углами и т.д., то это определение было бы правильно, но практически оно неудобно, потому что перечисляется целый ряд признаков. Вследствие этого принят другой способ определения понятий, который имеет целью избежать полного перечисления признаков. Он заключается в следующем.
Дадим определение прямоугольника. Для этой цели мы воспользуемся понятием «параллелограмм». Когда мы употребляем термин «параллелограмм», то под ним мы понимаем или прямоугольник, или ромб, или квадрат. Зная это, мы не будем говорить «прямоугольник есть геометрическая фигура, плоская, ограниченная прямыми линиями, четырёхугольная» и т.д., а просто скажем, что это есть «параллелограмм, в котором все углы прямые», ибо всякий под словом «параллелограмм» разумеет геометрическую фигуру, ограниченную четырьмя прямыми, попарно параллельными линиями; прибавляя, что все углы фигуры прямые, мы окончательно завершаем определение её именно тем, что мы отличаем прямоугольник от ромба и от квадрата, которые тоже суть параллелограммы. Таким образом, определяя понятие «прямоугольник», мы указали род данного понятия (параллелограмм) и присоединили к нему видовое различие его (четыре прямых угла), отличающее его от других видов, входящих в тот же род, т.е. от ромба и квадрата. Руководствуясь тем же правилом, мы скажем, что «ромб есть параллелограмм, в котором все стороны равны», а «квадрат есть параллелограмм, в котором стороны и углы равны».
Итак, определение заключается в указании рода данного понятия с присоединением видового различия его. Это в логике принято обозначать при помощи формулы: «Definitio fit per genus et differentiam specificam», т.е. определение совершается при помощи рода и видового различия.
Если нам нужно определить какое-либо понятие, то мы выражаем наше определение при помощи суждения, содержащего подлежащее и сказуемое. Подлежащее этого суждения называется определяемым (definiendum), сказуемое называется определяющим (definiens). Эти термины важны потому, что благодаря им мы можем указать те правила, при соблюдении которых получается правильное определение. Таких правил четыре.
Другие в этой формуле прибавляют к genus термин proximum: «definitro fit per genus proximum et differentiam specificam» («определение совершается при помощи ближайшего рода и видового различия»), желая этим указать на то, что следует пользоваться ближайшим родовым понятием.
1. Определение должно быть соразмерным, т.е. таким, в котором объёмы определяемого и определяющего тождественны, т.е. одинаково велики. Если правило это нарушено, то определение неадекватно, или несоразмерно. В таком случае определение делается или слишком широким или слишком узким, именно, если объём определяющего становится слишком широким или слишком узким в сравнении с объёмом определяемого. Возьмём в пример определение лошади. Если сказать, что «лошадь есть домашнее животное», то это определение будет слишком широким; в нём объём определяющего будет более широким, чем объём определяемого понятия (в объём домашнего животного, кроме лошади, входят ещё коровы, собаки и т.п.). Относительно такого определения можно также сказать, что в него не входит указание существенного признака данного понятия. Если в определении опущены существенные признаки понятия, тогда оно окажется слишком широким, как в только что приведённом примере.
Возьмём определение, которое погрешает в противоположном направлении. Если бы мы сказали, что «треугольник есть плоская прямолинейная фигура, имеющая три равные стороны», то это определение было бы слишком узким. В нём объём определяющего понятия меньше объёма определяемого понятия. Именно: в объём определяющего понятия входят только равносторонние треугольники, а в объём определяемого понятия входят как равносторонние, так и неравносторонние треугольники.
2. Определение не должно делать круга. Это правило требует, чтобы определяемое понятие не определялось посредством понятия, которое само делается понятным только посредством определяемого. Возьмём, например, определение «вращение есть движение вокруг оси». Это определение понятия «вращение» посредством понятия «ось» делает круг, ибо само понятие «ось» определяется только через понятие «вращение» (как известно, ось – это прямая, вокруг которой происходит вращение). Таким образом, ясно, что в нашем определении получается круг: понятие «вращение» определяется посредством понятия «ось», а понятие «ось» – посредством понятия «вращение».
В определении определяющее и определяемое должны быть двумя различны ми и притом самостоятельными понятиями. Если это не соблюдается, то получается ошибка, которая называется idem per idem, или тавтологией, именно: в определении получается только повторение того же слова, т.е. употребляются слова, имеющие то же самое значение. Например: «свет есть то, чему присущ свет»; «величина есть то, что способно уменьшаться и увеличиваться». Последнее определение представляет собой тавтологию, потому что уменьшение есть убавление величины, увеличение же есть прибавление величины, а потому, если мы определяем величину посредством того, что способно увеличиваться или уменьшаться, то очевидно, что в определяющем понятии содержится определяемое понятие.
3. Определение не должно быть отрицательным, оно должно указывать признаки, присущие данному понятию, а не чуждые ему, ибо эти последние для нас неважны и, кроме того, их можно указать очень много. Например, возьмём определение «театр есть здание, не служащее для жилья». Если A будет здание, служащее для жилья, то не-A, или зданий, не служащих для жилья, будет бесчисленное множество. Таким образом, это определение делается для нас непригодным. К числу определений, которые вследствие своего отрицательного характера непригодны, нужно отнести следующие: «жидкость есть то, что не твёрдо и не газообразно», «точка есть то, что не имеет частей и не имеет никакой величины». Отрицательные определения не раскрывают содержания понятия, они оставляют содержание понятия неопределённым. Поэтому отрицательные определения не отвечают главной цели определения – раскрыть содержание определяемого понятия, сделать содержание понятия определённым.
Отрицательные определения могут быть употребляемы только тогда, когда определяемое понятие имеет отрицательный характер. Например, «чужестранец» – это человек, не принадлежащий к данной стране, и т. д.
4. Определение должно быть ясным, т.е. в определении нельзя пользоваться выражениями двусмысленными, метафорическими и вообще мало понятными. Нарушение этого правила приводит к попытке сделать понятным неизвестное через посредство ещё менее известного (ignotum per ignotius). Например, выражения «архитектура есть застывшая музыка» и «нужда есть мать изобретения» – это есть образные выражения, которые не объясняют значения термина. Если же сказать, что «эксцентричность есть своеобразная идиосинкразия», то мы непонятное пытаемся объяснить посредством непонятного же.
Приёмы, заменяющие определения. Итак, чтобы наши определения были точны, они должны удовлетворять указанным четырём сословиям. Но не следует думать, что все наши понятия могут быть всегда определяемы указанным способом. Есть случаи, когда нам приходится знакомиться с содержанием понятия не посредством определения, а иными способами. Можно указать следующие способы, заменяющие определение.
1. Указание. Если, например, мы кого-нибудь желаем познакомить с тем, что такое тот или другой цвет, звук и т.п., то это мы будем в состоянии сделать только в том случае, если приведём его в соприкосновение с данным цветом, звуком и т.п., т.е. вставим его воспринимать то, с чем мы желаем его ознакомить. Такой способ ознакомления с известным понятием называется указанием. Указание употребляется во всех случаях, когда нам приходится знакомить кого-нибудь с предметами непосредственного восприятия:
2. Описание употребляется при ознакомлении с индивидуальными предметами или при ознакомлении со свойствами, принадлежащими какой-либо вещи. В таком случае приводятся возможно точно и полно признаки этой вещи, например описание Днепра у Гоголя, Рейнского водопада у Карамзина и т.п. В ботанике описывается строение того или иного цветка, процесс опыления и т.п., в химии описывается та или иная реакция.
3. Характеристика приводит выдающиеся признаки какого-либо предмета или явления. Если нам нужно познакомить кого-нибудь с тем, что такое «воображение построительное» и «воображение воспроизводящее», то мы вместо определения можем указать на какую-нибудь существенную черту, присущую тому или другому виду воображения, например, говорим, что для построительного воображения существенным является новизна сочетания, а для воспроизводящего – точность. Какое-нибудь свойство является характерным для того или другого лица: для воина – мужество, для врача – гуманность и т.п. Характерной особенностью семейства крестоцветных растений являются цветы с четырьмя листочками чашечки и четырьмя лепестками венчика, расположенными крест-накрест, с двумя короткими и четырьмя длинными тычинками.
4. Сравнение употребляется в том случае, когда мы знакомимся с тем или иным понятием при помощи сравнения его с другими понятиями, похожими на него. Мы можем дать понятие о теплопроводности какого-либо тела при помощи сравнения её со светопрозрачностью, например, если скажем, что теплопроводность по отношению к тепловым лучам есть то же самое, что прозрачность по отношению к световым лучам. Сравнение употребляется главным образом тогда, когда одно понятие уясняется при помощи другого понятия, более ясного, например, когда какое-либо абстрактное понятие уясняется при помощи какого-либо конкретного. Например, «жизнь есть школа опыта», «право есть воплощение, нравственной идеи», «совесть есть внутренний суд».
5. Различение употребляется в том случае, когда мы знакомим кого-нибудь с содержанием какого-либо понятия, указывая на то различие, которое существует между данным понятием и другими, например, если мы говорим, что «энтузиазм» отличается от «фанатизма» тем, что он вызывается чем-либо благородным и не переходит за пределы умеренности.
Вопросы для повторения
Что такое содержание понятия? Что такое сложные и простые понятия? Какие понятия не могут быть определены? Что такое определение? Перечислите условия правильности определения. Какие определения будут слишком узкие и какие слишком широкие? Когда определение делает круг? Почему признаки, входящие в определение, не должны иметь отрицательного характера? Назовите приёмы, заменяющие определение, и укажите особенности каждого приёма.