децимация сигнала что это
Децимация (обработка сигналов)
Отсчёт — численное значение амплитуды сигнала в определенный момент времени.
При децимации из исходной последовательности отсчетов
берется каждый N-й отсчет (N — целое число):
остальные отсчеты отбрасываются. Преобразование спектра при децимации существенно зависит от спектра исходного сигнала:
Таким образом, для сохранения спектра необходимо до децимации удалить из исходного сигнала частоты, превышающие частоту Найквиста децимированного сигнала. Эта операция производится цифровыми фильтрами.
Термин децимация происходит от изначального значения этого слова. Однако имеется существенное различие: если в Древнем Риме при децимации каждого десятого казнили, то при децимации сигналов каждый N-й отсчет, напротив, остается.
См. также
Ссылки
Полезное
Смотреть что такое «Децимация (обработка сигналов)» в других словарях:
Цифровая обработка сигналов — (ЦОС, DSP англ. digital signal processing) преобразование сигналов, представленных в цифровой форме. Любой непрерывный (аналоговый) сигнал может быть подвергнут дискретизации по времени и квантованию по уровню (оцифровке), то… … Википедия
Децимация — (наказание) дисциплинарное наказание в армии Древнего Рима, казнь каждого десятого по жребию. Децимация (обработка сигналов) уменьшение частоты дискретизации сигнала … Википедия
Передискретизация — Иллюстрация эффекта наложения спектров (алиасинга) при уменьшении разрешения (децимации) растрового изображения. Сверху изображение, уменьшенное без фильтрации. Снизу изображение, уменьшенное с применением фильтра нижних частот. Передискретизация … Википедия
Ресамплинг — Иллюстрация эффекта наложения спектров при децимации изображения. Сверху исходное изображение. Слева снизу уменьшенное в два раза с фильтрацией. Справа снизу уменьшенное в два раза без фильтрации (с наложением спектров). Передискретизация… … Википедия
Ресемплинг — Иллюстрация эффекта наложения спектров при децимации изображения. Сверху исходное изображение. Слева снизу уменьшенное в два раза с фильтрацией. Справа снизу уменьшенное в два раза без фильтрации (с наложением спектров). Передискретизация… … Википедия
ЦОС — Цифровая обработка сигналов (англ. digital signal processing, DSP), ЦОС преобразование сигналов, представленных в цифровой форме. Любой непрерывный (аналоговый) сигнал s(t) может быть подвергнут дискретизации по времени и квантованию по уровню… … Википедия
Цифровая фильтрация — Цифровая обработка сигналов (англ. digital signal processing, DSP), ЦОС преобразование сигналов, представленных в цифровой форме. Любой непрерывный (аналоговый) сигнал s(t) может быть подвергнут дискретизации по времени и квантованию по уровню… … Википедия
Цифровая фильтрация на ПЛИС – Часть 1
Давно хотел начать цикл статей, посвященных цифровой обработке сигналов на ПЛИС, но по разным причинам так и не мог к этому приступить. К счастью, в распоряжении появилось немного свободного времени, поэтому периодически я буду публиковать материалы, в которых отражены различные аспекты, связанные с ЦОС на ПЛИС.
В этих статьях я постараюсь минимизировать теоретическое описание тех или иных алгоритмов и большую часть материала посвятить практическим тонкостям, с которыми столкнулся лично я и мои коллеги, и знакомые, так или иначе связанные с разработкой на ПЛИС. Надеюсь, данный цикл статей принесет пользу, как начинающим инженерам, так и матёрым разработчикам.
Часть 1: CIC фильтр
sin(x)/x. Главное преимущество CIC фильтров состоит в том, что они совсем не требуют операций умножения (в отличие от другого типа фильтров, например, КИХ).
Введение
Из названия можно догадаться, что в основе CIC фильтра лежит два базовых блока: интегратор и гребенчатый фильтр (дифференциатор). Интегрирующее звено (int) представляет собой обычный БИХ-фильтр первого порядка, выполненный как самый простой аккумулятор. Гребенчатый фильтр (comb) является КИХ-фильтром первого порядка.
Дециматор
Если CIC-фильтр используется для понижения частоты дискретизации, то он называется дециматором. В таком случае первым звеном идет интегратор, затем происходит понижение частоты дискретизации и, наконец, идет звено дифференцирующего фильтра.
Интерполятор
Если CIC-фильтр используется для повышения частоты дискретизации, то он называется интерполятором. В таком случае дифференцирующее звено стоит на первом месте, затем происходит повышение частоты дискретизации и, наконец, идет звено интегрирующего фильтра.
В зависимости от задержки входного сигнала в дифференцирующем звене, можно получать различные частотные характеристики фильтра. Известно, что при увеличении параметра задержки D, увеличивается количество «нулей» амплитудно-частотной характеристики (АЧХ) фильтра.
Заметим, что для связки интегратора и гребенчатого фильтра (CIC фильтра) при увеличении параметра D в дифференцирующей секции нули АЧХ смещаются к центру – изменяется частота среза фильтра Fc = 2 pi / D.
На следующем рисунке приведена АЧХ фильтра при различных параметрах коэффициента дискретизации R (расчет сделан в MathCAD 14).
АЧХ CIC фильтра полностью эквивалентна частотной характеристике FIR фильтра с прямоугольной импульсной характеристикой (ИХ). Общая ИХ фильтра определяется как свертка всех импульсных характеристик каскадов связки интегратора и гребенчатого фильтра. С ростом порядка CIC фильтра, его ИХ интегрируется соответствующее число раз. Таким образом, для CIC фильтра первого порядка ИХ – прямоугольник, для фильтра второго порядка ИХ – равнобедренный треугольник, для третьего порядка ИХ – парабола и т.д.
Рост разрядности данных
К несчастью, увеличение величины задержки D в гребенчатой структуре и увеличение порядка фильтра N приводят к росту коэффициента передачи. Это в свою очередь приводит к увеличению разрядности на выходе фильтра. В задачах ЦОС, где применяются CIC фильтры нужно всегда об этом помнить и следить, чтобы передаваемые сигналы не выходили за используемую разрядную сетку. К примеру, негативный эффект роста разрядности проявляется в значительном увеличении используемых ресурсов кристалла ПЛИС.
Интерполятор: использование ограниченной точности не влияет на внутреннюю разрядность регистров, масштабируется только последний выходной каскад. Существенный рост разрядности данных происходит в секциях интеграторов.
Дециматор: CIC фильтр-дециматор очень чувствителен к параметрам D, R и N, от которых зависит разрядность промежуточных и выходных данных. И дифференцирующее звено, и интегратор влияют на конечную разрядность выходного сигнала.
В этих формулах: B — разрядность входных данных, Bmax — разрядность выходных данных, R — коэффициент дискретизации, D — параметр задержки, N — порядок фильтра (количество каскадов).
Замечание! В статье Хогенауэра описаны принципы выбора разрядности для каждого каскада дециматора. Xilinx и Altera при реализации своих фильтров учитывают негативный эффект роста разрядности фильтра и борятся с этим явлением методами, описанными в статье.
Xilinx CIC Filter
Так как я моя работа на 99% связана с микросхемами фирмы Xilinx, я приведу описание IP-ядра фильтра для этого вендора. Но смею вас заверить, что для Altera все практически аналогично.
Для того, чтобы создать CIC фильтр, необходимо зайти в приложение CORE Generator и создать новый проект, в котором указать тип используемого кристалла ПЛИС и различные другие несущественные в данном случае настройки.
CIC Compiler — Вкладка 1:
Component name имя компонента (используются латинские буквы a-z, цифры 0-9 и символ «_»).
CIC Compiler — Вкладка 2:
Summary — эта вкладка в виде списка отражает конечные настройки фильтра (количество каскадов, параметры частот, разрядность входных, выходных и промежуточных данных, задержка в фильтре и т.д.).
CIC Filter in MATLAB
Пример 1: Для моделирования очень удобным средством является программа MATLAB. Для примера возьмем модель CIC-фильтра 4 порядка, сделанного на логических элементах из System Generator Toolbox от Xilinx. Децимация и интерполяция не используется (CIC вырождается в фильтр скользящего среднего с окном 16). Параметры фильтра: R = 1, N = 4, D = 16. На следующем рисунке приведена модель одного каскада в среде MATLAB.
Посмотрим, как выглядит импульсная характеристика после каждого каскада фильтра, для этого подадим на вход системы периодический единичный импульс.
Видно, что сигнал на выходе первого звена образует прямоугольный импульс длительностью = D, на выходе второго звена — треугольный сигнал длительностью 2D, на выходе третьего звена — параболический импульс, на выходе третьего — кубическая парабола. Результат полностью согласуется с теорией.
Пример 2: непосредственно IP-ядро CIC фильтра. Параметры: N = 3, R = 4, D = 1. На следующем рисунке представлена модель фильтра.
Если на вход такого фильтра подать единичный импульс длительностью несколько тактов (например 32), то на выходе образуется сигнал параболической формы, напоминающий ИХ фильтра скользящего среднего третьего порядка.
На этом хотелось бы подвести итог. CIC фильтры используются во многих задачах, где требуется изменить частоту дискретизации. CIC фильтры применяются в системах, работающих на нескольких частотах дискретизации (multirate processing), например, в аудио-технике для изменения бит-рейта (из 44.1кГц в 48кГц и обратно). CIC фильтры применяются в системах связи для реализации DDC (digital down converter) и DUC (digital up converters). Пример использования CIC-фильтров: микросхема цифрового приема AD6620 от Analog Devices.
Реализация собственного фильтра на ПЛИС на HDL языках часто не требуется, и можно смело пользоваться готовыми ядрами от вендоров, либо готовыми opensource-проектами. Если все же возникла необходимость в реализации собственного CIC фильтра для прикладной задачи, то нужно помнить следующие принципы.
Курс лекций «Основы цифровой обработки сигналов»
Часто ко мне обращаются люди с вопросами по задачам из области цифровой обработки сигналов (ЦОС). Я подробно рассказываю нюансы, подсказываю нужные источники информации. Но всем слушателям, как показало время, не хватает практических задач и примеров в процессе познания этой области. В связи с этим я решил написать краткий интерактивный курс по цифровой обработке сигналов и выложить его в открытый доступ.
Большая часть обучающего материала для наглядного и интерактивного представления реализована с использованием Jupyter Notebook. Предполагается, что читатель имеет базовые знания из области высшей математики, а также немного владеет языком программирования Python.
Список лекций
Этот курс содержит материалы в виде законченных лекций по разным тематикам из области цифровой обработки сигналов. Материалы представлены с использованием библиотек на языке Python (пакеты numpy, scipy, matplotlib, и т.д.). Основная информация для этого курса взята из моих лекций, которые я, будучи аспирантом, читал студентам Московского Энергетического Института (НИУ МЭИ). Частично информация из этих лекций была использована на обучающих семинарах в Центре Современной Электроники, где я выступал в качестве лектора. Кроме того, в этот материал входит перевод различных научных статей, компиляция информации из достоверных источников и литературы по тематике цифровой обработки сигналов, а также официальная документация по прикладным пакетам и встроенным функциям библиотек scipy и numpy языка Python.
Для пользователей MATLAB (GNU Octave) освоение материала с точки зрения программного кода не составит труда, поскольку основные функции и их атрибуты во многом идентичны и схожи с методами из Python-библиотек.
Все материалы сгруппированы по основным тематикам цифровой обработки сигналов:
Список лекций — достаточный но, разумеется, неполный для вводного знакомства с областью ЦОС. При наличии свободного времени я планирую поддерживать и развивать этот проект.
Где найти?
Все материалы — абсолютно бесплатны и доступны в виде открытого репозитория на моем гитхабе как opensource проект. Материалы представлены в двух форматах — в виде тетрадок Jupyter Notebook для интерактивной работы, изучения и редактирования, и в виде скомпилированных из этих тетрадок HTML-файлов (после скачивания с гитхаба имеют вполне пригодный формат для чтения и для печати).
Ниже приводится очень краткое описание разделов курса с небольшими пояснениями, терминами и определениями. Основная информация доступна в исходных лекциях, здесь представлен лишь краткий обзор!
Сигналы. Z-преобразование
Вводный раздел, в котором содержится основная информация по типам сигналов. Вводится понятие дискретной последовательности, дельта-функции и функции Хевисайда (единичный скачок).
Для правильного восстановления аналогового сигнала из цифрового без искажений и потерь используется теорема отсчетов, известная как Теорема Котельникова (Найквиста-Шеннона).
Любой непрерывный сигнал с ограниченным спектром может быть восстановлен однозначно и без потерь по своим дискретным отсчетам, взятым с частотой строго больше удвоенной верхней частоты спектра непрерывного сигнала.
Такая трактовка справедлива при условии, что непрерывная функция времени занимает полосу частот от 0 до значения верхней частоты. Если шаг квантования и дискретизации выбраны неправильно, преобразование сигнала из аналоговой формы в дискретную будет происходить с искажениями.
Также в этом разделе описывается Z-преобразование и его свойства, показывается представление дискретных последовательностей в Z-форме.
Пример конечной дискретной последовательности:
.
Пример этой же последовательности в Z-форме:
Преобразование Фурье. Свойства. ДПФ и БПФ
В этом разделе описывается понятие временной и частотной области сигнала. Вводится определение дискретного преобразования Фурье (ДПФ). Рассмотрены прямое и обратное ДПФ, их основные свойства. Показан переход от ДПФ к алгоритму быстрого преобразования Фурье (БПФ) по основанию 2 (алгоритмы децимации по частоте и по времени). Отражена эффективность БПФ в сравнении с ДПФ.
В частности, в этом разделе описывается Python пакет scipy.ffpack для вычисления различных преобразований Фурье (синусное, косинусное, прямое, обратное, многомерное, вещественное).
Преобразование Фурье позволяет представить любую функцию в виде набора гармонических сигналов! Преобразование Фурье лежит в основе методов свертки и проектировании цифровых корреляторов, активно применяется при спектральном анализе, используется при работе с длинными числами.
Особенности спектров дискретных сигналов:
1. Спектральная плотность дискретного сигнала – периодическая функция с периодом, равным частоте дискретизации.
2. Если дискретная последовательность вещественная, то модуль спектральной плотности такой последовательности есть четная функция, а аргумент – нечетная функция частоты.
Спектр гармонического сигнала:
Сравнение эффективности ДПФ и БПФ
Эффективность алгоритма БПФ и количество выполняемых операций линейно зависит от длины последовательности N:
N | ДПФ | БПФ | Отношение числа комплексных сложений | Отношение числа комплексных умножений | ||
---|---|---|---|---|---|---|
Число операций умножения | Число операций сложения | Число операций умножения | Число операций сложения | |||
2 | 4 | 2 | 1 | 2 | 4 | 1 |
4 | 16 | 12 | 4 | 8 | 4 | 1.5 |
8 | 64 | 56 | 12 | 24 | 5.3 | 2.3 |
16 | 256 | 240 | 32 | 64 | 8 | 3.75 |
32 | 1024 | 992 | 80 | 160 | 12.8 | 6.2 |
64 | 4096 | 4032 | 192 | 384 | 21.3 | 10.5 |
128 | 16384 | 16256 | 448 | 896 | 36.6 | 18.1 |
. | . | . | . | . | . | . |
4096 | 16777216 | 16773120 | 24576 | 49152 | 683 | 341 |
8192 | 67108864 | 67100672 | 53248 | 106496 | 1260 | 630 |
Как видно, чем больше длина преобразования, тем больше экономия вычислительных ресурсов (по скорости обработки или количеству аппаратных блоков)!
Любой сигнал произвольной формы можно представить в виде набора гармонических сигналов разных частот. Иными словами, сигнал сложной формы во временной области имеет набор комплексных отсчетов в частотной области, которые называются *гармоники*. Эти отсчеты выражают амплитуду и фазу гармонического воздействия на определенной частоте. Чем больше набор гармоник в частотной области, тем точнее представляется сигнал сложной формы.
Свертка и корреляция
В этом разделе вводится понятие корреляции и свертки для дискретных случайных и детерминированных последовательностей. Показана связь автокорреляционной и взаимнокорреляционной функций со сверткой. Описываются свойства свертки, в частности, рассмотрены методы линейной и циклической свертки дискретного сигнала с подробным разбором на примере дискретной последовательности. Кроме того, показан метод вычисления «быстрой» свертки с помощью алгоритмов БПФ.
В реальных задачах часто ставится вопрос о степени похожести одного процесса на другой или же о независимости одного процесса от другого. Иными словами, требуется определить взаимосвязь между сигналами, то есть найти корреляцию. Методы корреляции используются в широком диапазоне задач: поиск сигналов, компьютерное зрение и обработка изображений, в задачах радиолокации для определения характеристик целей и определения расстояния до объекта. Кроме того, с помощью корреляции производится поиск слабых сигналов в шумах.
Свертка описывает взаимодействие сигналов между собой. Если один из сигналов — импульсная характеристика фильтра, то свертка входной последовательности с импульсной характеристикой есть ни что иное, как реакция цепи на входное воздействие. Иными словами, результирующий сигнал отражает прохождение сигнала через фильтр.
Автокорреляционная функция (АКФ) находит применение в кодировании информации. Выбор кодирующей последовательности по параметрам длины, частоты и формы во многом обусловлен корреляционными свойствами этой последовательности. Наилучшая кодовая последовательность обладает наименьшим значением вероятности ложного обнаружения или срабатывания (для детектирования сигналов, для пороговых устройств) или ложной синхронизации (для передачи и приема кодовых последовательностей).
В этом разделе представлена таблица сравнения эффективности быстрой свертки и свертки, вычисляемой по прямой формуле (по числу вещественных умножений).
Как видно, для длин БПФ до 64, быстрая свёртка проигрывает у прямого метода. Однако, при увеличении длины БПФ результаты меняются в обратную сторону — быстрая свертка начинает выигрывать у прямого метода. Очевидно, чем больше длина БПФ, тем лучше выигрыш частотного метода.
N | Свертка | Быстрая свертка | Отношение |
---|---|---|---|
8 | 64 | 448 | 0.14 |
16 | 256 | 1088 | 0.24 |
32 | 1024 | 2560 | 0.4 |
64 | 4096 | 5888 | 0.7 |
128 | 16K | 13312 | 1.23 |
. | . | .. | . |
2048 | 4M | 311296 | 13.5 |
Случайные сигналы и шум
В этом разделе вводится понятие случайных сигналов, плотности распределения вероятностей, закона распределения случайной величины. Рассматриваются математические моменты — среднее (математическое ожидание) и дисперсия (или корень этой величины — среднеквадратическое отклонение). Также в этом разделе рассматривается нормальное распределение и связанное с ним понятие белого шума, как основного источника шумов (помех) при обработке сигналов.
Случайным сигналом называют функцию времени, значения которой заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью. К основным характеристикам случайных сигналов относятся:
В задачах ЦОС случайные сигналы делятся на два класса:
С помощью случайных величин можно моделировать воздействие реальной среды на прохождение сигнала от источника к приёмнику данных. При прохождении сигнала через какое-то шумящее звено, к сигналу добавляется так называемый белый шум. Как правило, спектральная плотность такого шума равномерно (одинаково) распределена на всех частотах, а значения шума во временной области распределены нормально (Гауссовский закон распределения). Поскольку белый шум физически добавляется к амплитудам сигнала в выбранные отсчеты времени, он называется аддитивный белый гауссовский шум (AWGN — Additive white Gaussian noise).
Сигналы, модуляция и манипуляция
В этом разделе показаны основные способы изменения одного или нескольких параметров гармонического сигнала. Вводятся понятия амплитудной, частотной и фазовой модуляции. В частности, выделяется линейная частотная модуляция, применяемая в задачах радиолокации. Показаны основные характеристики сигналов, спектры модулированных сигналов в зависимости от параметров модуляции.
Для удобства на языке Python создан набор функций, осуществляющих перечисленные виды модуляции. Пример реализации ЛЧМ-сигнала:
Также в этом разделе из теории передачи дискретных сообщений описаны виды цифровой модуляции — манипуляции. Как и в случае с аналоговыми сигналами, цифровые гармонические последовательности могут быть манипулированы по амплитуде, фазе и частоте (либо по нескольким параметрам сразу).
Цифровые фильтры — БИХ и КИХ
Достаточно большой раздел, посвященный вопросам цифровой фильтрации дискретных последовательностей. В задачах цифровой обработки сигналов данные проходят через цепи, которые называются фильтрами. Цифровые фильтры, как и аналоговые, обладают различными характеристиками — частотные: АЧХ, ФЧХ, временная: импульсная характеристика, а также передаточная характеристика фильтра. Цифровые фильтры используются в основном для улучшения качества сигнала — для выделения сигнала из последовательности данных, либо для ухудшения нежелательных сигналов — для подавления определенных сигналов в приходящих последовательностях отсчетов.
В разделе перечислены основные преимущества и недостатки цифровых фильтров (в сравнении с аналоговыми). Вводится понятие импульсной и передаточной характеристик фильтра. Рассматривается два класса фильтров — с бесконечной импульсной характеристикой (БИХ) и конечной импульсной характеристикой (КИХ). Показан способ проектирования фильтров по канонической и прямой форме. Для КИХ фильтров рассматривается вопрос о способе перехода к рекурсивной форме.
Для КИХ фильтров показан процесс проектирования фильтра от стадии разработки технического задания (с указанием основных параметров), до программной и аппаратной реализации — поиска коэффициентов фильтра (с учетом формы представления числа, разрядности данных и т.д.). Вводятся определения симметричных КИХ фильтров, линейной ФЧХ и её связи с понятием групповой задержки.
Оконные функции в задачах фильтрации
Чем сильнее подавление боковых лепестков спектра, тем шире главный лепесток спектра и наоборот.
Одно из применений оконных функций: обнаружение слабых сигналов на фоне более сильных путём подавления уровня боковых лепестков. Основные оконные функции в задачах ЦОС — **треугольное, синусоидальное, окно Ланцоша, Ханна, Хэмминга, Блэкмана, Харриса, Блэкмана-Харриса, окно с плоской вершиной, окно Наталла, Гаусса, Кайзера** и множество других. Большая часть из них выражена через конечный ряд путём суммирования гармонических сигналов с определенными весовыми коэффициентами. Такие сигналы отлично реализуются на практике на любых аппаратных устройствах (программируемые логические схемы или сигнальные процессоры).
Ресемплинг. Децимация и интерполяция
В этом разделе рассматриваются вопросы многоскоростной обработки сигналов — изменения частоты дискретизации. Многоскоростная обработка сигналов (multirate processing) предполагает, что в процессе линейного преобразования цифровых сигналов возможно изменение частоты дискретизации в сторону уменьшения или увеличения, либо в дробное число раз. Это приводит к более эффективной обработке сигналов, так как открывается возможность использования минимально допустимых частот дискретизации и, как следствие, значительного уменьшения требуемой вычислительной производительности проектируемой цифровой системы.
Децимация (прореживание) – понижение частоты дискретизации. Интерполяция – повышение частоты дискретизации.
Также в разделе рассматривается класс однородных КИХ фильтров, которые называются интегрально-гребенчатыми фильтрами (CIC, Cascaded integrator–comb). Показана реализация, основные свойства и особенности CIC фильтров. В силу линейности математических операций, происходящих в CIC фильтре возможно каскадное соединение нескольких фильтров подряд, что дает пропорциональное уменьшение уровня боковых лепестков, но также увеличивает «завал» главного лепестка амплитудно-частотной характеристики.
График АЧХ фильтра в зависимости от коэффициента децимации:
Также в этом разделе обсуждается вопрос увеличения разрядности данных на выходе CIC фильтра в зависимости от его параметров. Это особенно важно в задачах программной реализации, в частности на ПЛИС.
Для практической реализации CIC фильтров на Python разработан отдельный класс CicFilter, реализующий методы децимации и интерполяции. Также показаны примеры изменения частоты дискретизации с помощью встроенных методов из scipy пакета Python.
Наконец, в этом разделе приведен особый класс фильтров — скользящего среднего. Показано три способа реализации: через свертку сигналов, с помощью КИХ-фильтра и БИХ-фильтра.
Заключение
Надеюсь, этот курс лекций в совокупности с моими предыдущими статьями по цифровой обработке сигналов на ПЛИС принесет практическую пользу и поможет читателю лучше понять основы цифровой обработки сигналов. Этот проект будет улучшаться и дополняться новым полезным и не менее интересным материалом. Следите за развитием!
Дополнительно к этому материалу я поддерживаю и развиваю свой проект по основным модулям ЦОС (на языке Python). Он содержит пакет генерации различных сигналов, класс CIC фильтров для задач децимации и интерполяции, алгоритм расчета коэффициентов корректирующего КИХ-фильтра, фильтр скользящего среднего, алгоритм вычисления сверх-длинного БПФ через методы двумерного преобразования (последнее очень пригодилось в работе при аппаратной реализации на ПЛИС).