для чего в кадре ethernet указывается контрольная сумма
Для чего в кадре ethernet указывается контрольная сумма
Описание технологии Ethernet
Форматы кадров Ethernet
Для успешной доставки информации получателю каждый кадр должен кроме данных содержать служебную информацию : длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т.д.
Большинство сетевых администраторов не уделяет должного внимания типам кадров Ethernet, а это может явиться источником проблем. Например, если клиентское сетевое программное обеспечение настроено на неверный тип кадра, то пользователь не сможет взаимодействовать с сервером. За типом кадра приходится особенно внимательно следить в сетях Nowell NetWare, так как в новых версиях этой операционной системы тип кадра по умолчанию был изменён с 802.3 на 802.2. Кроме того, в корпоративных сетях применяются устройства от нескольких поставщиков, базирующихся на разных протоколах взаимодействия и использующих различные типы кадров.
Для того, чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существует четыре основных разновидности кадров Ethernet :
Рассмотрим поля, общие для всех четырёх типов кадров (рис. 1).
Признак начала кадра (8 бит)
Адрес получателя (48 бит)
Адрес отправителя (48 бит)
Данные (переменная длина)
Контрольная сумма (32 бит)
Рис. 1. Общий формат кадров Ethernet
Поля в кадре имеют следующие значения :
Рассмотрим более подробно форматы кадров разных типов. Тип кадра Ethernet II используется многими протоколами верхнего уровня, такими как IPX, TCP/IP и Apple Talk. Данный тип кадра был разработан фирмами DEC, Intel и Xerox. Необходимо учитывать, что хотя данный тип кадра является наиболее широко используемым, он не одобрен организациями ISO и IEEE. Формат данного типа кадра отличается от рассмотренного выше только тем, что в поле «Длина/тип» всегда указывается тип протокола.
Сетевые операционные системы Nowell NetWare 2.x и 3.x (за исключением 3.12) по умолчанию используют кадры Ethernet 802.3. Хотя в названии этого кадра есть упоминание комитета IEEE, последний не имел никакого отношения к его разработке.
Данный тип кадра не содержит никакой информации о протоколе. Поле «Длина/тип» всегда указывает длину кадра. В результате нет стандартных методов идентификации сетевого протокола, которому принадлежит данный кадр. Однако, только в соответствии с концепцией фирмы Nowell, только протокол IPX может использоваться с данным типом кадров. Разработана специальная последовательность действий для определения того, что именно протокол IPX был инкапсулирован в кадр данного типа :
В результате стандартизации сетей Ethernet подкомитетом IEEE 802.3 появился кадр Ethernet 802.2. Этот кадр является базовым для операционных систем Nowell NetWare версий 3.12 и 4.х. В данном типе кадра сразу за адресом отправителя следует поле длины, имеющее такое же назначение. Кроме того, этот тип кадра содержит несколько дополнительных полей, рекомендованных подкомитетом IEEE 802.3. Эти поля распологаются за полем «Длина/тип» и имеют следующее назначение :
Формат кадра Ethernet 802.2 имеет некоторые недостатки, в частности, он содержит нечётное число байтов служебной информации. Это не совсем удобно для работы большинства сетевых устройств. Кроме того, для идентификации протокола сетевого уровня отводится 7 бит,что позволяет поддерживать «всего» 128 различных протоколов. Кадр Ethernet SNAP, являющийся дальнейшим развитием Ether n et 802.2, содержит следующие дополнительные поля (рис. 2) :
В совокупности эти два поля составляют дополнительное пятибайтовое поле для идентификации протокола.Это было сделано для увеличения числа поддерживаемых протоколов.
Для чего в кадре ethernet указывается контрольная сумма
Описание технологии Ethernet
Форматы кадров Ethernet
Для успешной доставки информации получателю каждый кадр должен кроме данных содержать служебную информацию : длину поля данных, физические адреса отправителя и получателя, тип сетевого протокола и т.д.
Большинство сетевых администраторов не уделяет должного внимания типам кадров Ethernet, а это может явиться источником проблем. Например, если клиентское сетевое программное обеспечение настроено на неверный тип кадра, то пользователь не сможет взаимодействовать с сервером. За типом кадра приходится особенно внимательно следить в сетях Nowell NetWare, так как в новых версиях этой операционной системы тип кадра по умолчанию был изменён с 802.3 на 802.2. Кроме того, в корпоративных сетях применяются устройства от нескольких поставщиков, базирующихся на разных протоколах взаимодействия и использующих различные типы кадров.
Для того, чтобы рабочие станции имели возможность взаимодействовать с сервером в одном сегменте сети, они должны поддерживать единый формат кадра. Существует четыре основных разновидности кадров Ethernet :
Рассмотрим поля, общие для всех четырёх типов кадров (рис. 1).
Признак начала кадра (8 бит)
Адрес получателя (48 бит)
Адрес отправителя (48 бит)
Данные (переменная длина)
Контрольная сумма (32 бит)
Рис. 1. Общий формат кадров Ethernet
Поля в кадре имеют следующие значения :
Рассмотрим более подробно форматы кадров разных типов. Тип кадра Ethernet II используется многими протоколами верхнего уровня, такими как IPX, TCP/IP и Apple Talk. Данный тип кадра был разработан фирмами DEC, Intel и Xerox. Необходимо учитывать, что хотя данный тип кадра является наиболее широко используемым, он не одобрен организациями ISO и IEEE. Формат данного типа кадра отличается от рассмотренного выше только тем, что в поле «Длина/тип» всегда указывается тип протокола.
Сетевые операционные системы Nowell NetWare 2.x и 3.x (за исключением 3.12) по умолчанию используют кадры Ethernet 802.3. Хотя в названии этого кадра есть упоминание комитета IEEE, последний не имел никакого отношения к его разработке.
Данный тип кадра не содержит никакой информации о протоколе. Поле «Длина/тип» всегда указывает длину кадра. В результате нет стандартных методов идентификации сетевого протокола, которому принадлежит данный кадр. Однако, только в соответствии с концепцией фирмы Nowell, только протокол IPX может использоваться с данным типом кадров. Разработана специальная последовательность действий для определения того, что именно протокол IPX был инкапсулирован в кадр данного типа :
В результате стандартизации сетей Ethernet подкомитетом IEEE 802.3 появился кадр Ethernet 802.2. Этот кадр является базовым для операционных систем Nowell NetWare версий 3.12 и 4.х. В данном типе кадра сразу за адресом отправителя следует поле длины, имеющее такое же назначение. Кроме того, этот тип кадра содержит несколько дополнительных полей, рекомендованных подкомитетом IEEE 802.3. Эти поля распологаются за полем «Длина/тип» и имеют следующее назначение :
Формат кадра Ethernet 802.2 имеет некоторые недостатки, в частности, он содержит нечётное число байтов служебной информации. Это не совсем удобно для работы большинства сетевых устройств. Кроме того, для идентификации протокола сетевого уровня отводится 7 бит,что позволяет поддерживать «всего» 128 различных протоколов. Кадр Ethernet SNAP, являющийся дальнейшим развитием Ether n et 802.2, содержит следующие дополнительные поля (рис. 2) :
В совокупности эти два поля составляют дополнительное пятибайтовое поле для идентификации протокола.Это было сделано для увеличения числа поддерживаемых протоколов.
СЕТЕВАЯ ТЕХНОЛОГИЯ ETHERNET. КАДРЫ ETHERNET И ИХ АНАЛИЗ С ПОМОЩЬЮ АНАЛИЗАТОРА СЕТЕВЫХ ПРОТОКОЛОВ
Описание: Сетевая технология Ethernet и форматы кадров данных Ethernet представляет собой пакетную технологию передачи данных работающую на физическом и канальном уровнях модели OSI Рис. Стандарты Ethernet разрабатываются комитетом 802.
Дата добавления: 2015-01-29
Размер файла: 2.51 MB
Работу скачали: 47 чел.
Поделитесь работой в социальных сетях
Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск
КАДРЫ ETHERNET И ИХ АНАЛИЗ С ПОМОЩЬЮ АНАЛИЗАТОРА СЕТЕВЫХ ПРОТОКОЛОВ
1. Сетевая технология Ethernet и форматы кадров данных
Ethernet представляет собой пакетную технологию передачи данных, работающую на физическом и канальном уровнях модели OSI
Рис. А1. Модель взаимодействия открытых систем ISO/OSI
Информация, передаваемая технологией Ethernet, размещается в структурах данных, называемых кадрами ( frame ) Ethernet. Эти структуры
имеют заголовок ( Header ) со служебной информацией, поле данных ( Data )
14-22 байт 46-1500 байт 4 байта
Заголовок Поле данных FCS
Рис. 1. Обобщ ѐ нный формат кадра Ethernet
Контрольная сумма представляет собой некоторое значение, рассчи- танное по определ ѐ нному алгоритму из последовательности передаваемых данных отправителем и помещ ѐ нное в поле кадра. Это значение использу- ется получателем для проверки правильности передачи данных пут ѐ м рас- ч ѐ та из последовательности полученных данных по тому же алгоритму и последующему сравнению результата расч ѐ та со значением контрольной суммы, переданной в кадре.
Алгоритм CRC-32 характеризуется очень высокой вероятностью изменения значения контрольной суммы при изменении значения хотя бы одного бита в поле данных кадра Ethernet. Следует отметить, что технология Ethernet в общем случае не выполняет запрос на повторную передачу кадра при несовпадении значений контрольной суммы, а просто отбрасывает кадр. Повторная передача кадра организуется протоколами более высоких уровней модели OSI (Рис.A1).
В качестве адресов технология Ethernet использует 6-байтовые MAC-
адреса, определяемые для подуровня доступа к среде передаче ( Media
Рис. 2. Вывод конфигурационной информации стека сетевых протоколов компьютера утилитой ipconfig
или ifconfig для Linux/Unix
На рис. 3 приведен формат 48-битового MAC-адреса.
Рис. 3. Формат MAC-адреса
ким образом, уникальность МАС-адреса обеспечивается, с одной стороны,
Рис. 4. Форма поиска производителя сетевого интерфейса по значению OUI на сайте IEEE
Существуют три типа МАС-адресов: индивидуальные или однопунк- товые ( Unicast ), групповые ( Multicast ) и широковещательные ( Broadcast). Индивидуальный (однопунктовый) адрес определяет одну конкретную ра-
3). Следует отметить, что адрес отправителя может быть только индиви- дуальным (однопунктовым). А 46-й бит МАС-адреса (U/L) указывает, яв- ляется ли этот адрес уникальным в глобальном смысле (бит равен 0) или в пределах локальной сети в случае, если он переопредел ѐ н администрато- ром (бит равен 1). С уч ѐ том характерного для Ethernet порядка передачи битов: первыми передаются младшие биты байта, значения старшего байта группового адреса могут равняться либо 01 H (для уникального в глобаль- ном смысле адреса), либо 03 H (для уникального в пределах локальной сети адреса).
В сетях Ethernet на канальном уровне могут использоваться заголовки четыр ѐ х типов (рис. 5). Их существование связано с длительной (по мер- кам информационных технологий) историей развития технологии Ethernet. Практически вс ѐ сетевое оборудование умеет работать со всеми формата- ми кадров технологии Ethernet.
Исторически первым типом кадра является так называемый кадр
Рис. 5. Форматы кадров Ethernet
Описанный тип кадра появился во время появления и развития Ин- тернет, очевидно, поэтому и в настоящее время он используется для пере- носа в локальных сетях пакетов протокола IP и других протоколов стека TCP/IP.
Формат Ethernet II (DIX) имеет один недостаток: если передача кадра внезапно прервалась, то получатель такого незаверш ѐ нного кадра будет принимать его как целый и обнаружит ошибку только после полного его
при ѐ ма и расч ѐ та контрольной суммы. Очевидно, что в этом случае доста- точно много компьютерного времени будет потрачено впустую. Инженеры фирмы Novell, являющейся первой фирмой, разработавшей системное про- граммное обеспечение для работы в локальных компьютерных сетях Netware, предложили формат кадра, называемый Novell 802.3 или Raw
стороне получателя и на стороне отправителя. Эти идентификаторы, также определ ѐ нные IEEE, размещаются в поле точки доступа к услугам полу-
поля имеют одинаковые значения, например, для протокола IPX они равны
Современное оборудование Ethernet поддерживает все четыре форма- та кадров. Для распознания формата кадра, полученного получателем, по- лучатель выполняет следующие проверки:
— проверяется двухбайтовое значение в 13 и 14 байтах, если оно пре-
вышает 1500 ( 05DC H ), то оно не может быть длиной и данный кадр имеет формат Ethernet II (DIX);
— если значение в 13 и 14 байтах меньше либо равно 1500 ( 05DC H ), то это длина поля данных и проверяется двухбайтовое значение в 15 и
— если проверяется двухбайтовое значение в 15 и 16 байтах равно
— в противном случае проверяется, равно ли двухбайтовое значение в
— в оставшемся случае кадр имеет формат 802.3/LLC.
Алгоритм определения типа кадра приведен на рис. 6.
Значения поля Тип/Длина превышает 1500?
Канальный уровень сетевой модели OSI
5.2. Форматы кадров канального уровня
Формат кадра Ethernet
Формат кадров канального уровня практически одинаков для всех Ethernet совместимых технологий. Технология Ethernet предусматривает кадры четырех форматов, которые незначительно отличаются друг от друга. Один из форматов кадра (802.3) подуровня МАС приведен на рис. 5.3.
В локальных сетях адресация сообщений производится на основе МАС-адресов, которые «прошиты» в ПЗУ сетевых карт конечных узлов и на интерфейсах сетевых элементов. При запуске компьютера МАС-адрес из ПЗУ копируется в оперативную память ОЗУ. В современной аппаратуре программаторы позволяют изменять МАС-адреса, что снижает эффективность фильтрации трафика на основе МАС-адресов, т.е. снижает информационную безопасность.
Адрес, состоящий из всех единиц FF-FF-FF-FF-FF-FF, является широковещательным адресом (broadcast), когда передаваемая в кадре информация предназначена всем узлам локальной сети.
Младшие 24 разряда МАС-адреса (6 шестнадцатеричных разрядов) задают уникальный номер оборудования, например, номер сетевой карты. Старшие 24 разряда физического МАС-адреса, называемые уникальным идентификатором организации (OUI), присваиваются производителю оборудования институтом IEEE. Израсходовав все МАС-адреса, задаваемые младшими 24 разрядами, производитель оборудования должен получить новый идентификатор OUI от IEEE. Несмотря на то, что в МАС-адресе выделена старшая и младшая части, он считается, в отличие от IP-адреса, плоским (не иерархическим).
Поле L ( рис. 5.3) определяет длину поля данных Data, которое может быть от 46 до 1500 байт. Если поле данных меньше 46 байт, то оно дополняется до 46 байт.
Когда сетевое устройство принимает кадр, размер которого меньше минимального или больше максимального, то устройство отбрасывает такой кадр, поскольку считает, что кадр искажен в результате коллизии или воздействия помех.
Формат кадра протокола «точка-точка» РРР
Кадр начинается с флага 01111110. Поскольку сеть ограничена двумя узлами, то в кадре задается широковещательный адрес узла назначения 11111111 размером в 1 байт, поскольку в двухточечном соединении кадр, переданный одним узлом, в любом случае попадет на другой узел. По этой же причине не задается адрес узла-источника. В поле управления длиной 1 байт задан код 00000011. Поле протокола длиной в 2 байта идентифицирует протокол вышележащего уровня. Поле данных содержит пакет, определенный в поле протокола. Поле контрольной суммы (FCS) длиной 2 или 4 байта позволяет обнаруживать ошибки в полученном кадре.
Короткий заголовок кадра РРР позволяет эффективно использовать пропускную способность канала. Протокол РРР позволяет производить аутентификацию узлов, обменивающихся данными. Протокол РРР широко используется как в локальных, так и в глобальных сетях.
Формат кадра беспроводной локальной сети
В технологиях беспроводных сетей стандарта 802.11, называемых также Wi-Fi (Wireless Fidelity),используется формат кадра, изображенный на рис. 5.6.
Также как в сетях Ethernet в сетях Wi-Fi на уровне управления логическим каналом LLC используется протокол 802.2. В формате кадра используются МАС-адрес назначения DA и МАС-адрес источника SA по 48 двоичных разряда. Концевик кадра содержит контрольную сумму FCS для проверки принятого кадра на наличие ошибок.
Обмен сообщениями в сетях Wi-Fi обычно производится через промежуточные устройства (беспроводные точки доступа). Поэтому в формате кадра 802.11 дополнительно предусмотрены:
Поле управления кадром содержит информацию о версии протокола, типе кадра (контроль, управление, данные), о наличии дополнительных фрагментов кадров, о шифровании данных, и другую информацию.
Поле Длительность/Идентификатор используется по-разному, в зависимости от типа кадра. В этом поле указывается либо время, требуемое для передачи кадра, либо идентификатор станции, передавшей кадр.
Поле управления последовательностью размером в 2 байта состоит из двух частей: первые 4 бита задают номер фрагмента кадра; оставшиеся 12 бит задают номер последовательности, который был присвоен кадру.
В кадрах могут передаваться данные (пакет IP) или служебная информация, размещаемые в поле основного текста кадра (Frame Body).
Технология Ethernet. Обзор, описание, формат кадра.
Приветствую всех снова на нашем сайте!
Вынужденная пауза в выходе новых статей подошла к концу и, собственно, этой статьей мы положим начало активнейшему периоду наполнения сайта новым контентом. С выбором темы для статьи было в этот раз все максимально просто — в далекие-далекие времена была обещана статья про работу с Ethernet, наконец-то настало время исполнить обещанное… Но начнем мы для начала с общего обзора и описания технологии и некоторых нюансов, связанных с работой. А уже в следующих статьях будет практическое использование.
Семейство технологий Ethernet.
Как в самом начале не привести максимально «стандартное» и распространенное определение… Вот оно: Ethernet — семейство технологий пакетной передачи данных между устройствами для компьютерных и промышленных сетей. А теперь уже переходим непосредственно к сути.
В сетевой модели OSI (про нее скоро тоже будет статья, а здесь появится ссылка на нее) Ethernet отвечает за 2 самых низких уровня — физический и канальный. Собственно, физический уровень определяет метод, который используется для непосредственной передачи двоичных данных. Канальный же, в свою очередь, обеспечивает упаковку полученных с физического уровня данных в структурированные кадры, а также контролирует их целостность и безошибочность.
Модификации Ethernet.
Классификация модификаций Ethernet в основном заключается в различиях двух факторов — используемого типа кабеля, а также возможной скорости передачи данных. Различают:
Варианты соединения | Скорость | |
---|---|---|
Ethernet | Коаксиальный кабель, оптика, витая пара | 10 Мб/с |
Fast Ethernet | Оптика, витая пара | 100 Мб/с |
Gigabit Ethernet | Оптика, витая пара | 1 Гб/с |
10G Ethernet | Оптика, витая пара | 10 Гб/с |
Как мы и отметили сразу, различаются, в первую очередь, скорость передачи данных и тип используемого кабеля. На заре развития Ethernet использовались исключительно коаксиальные кабели, и лишь затем появились варианты с витой парой и оптикой, что привело к значительному расширению возможностей. К примеру, использование витой пары дает одновременно:
Внутри указанных четырех модификаций (Ethernet, Fast Ethernet, Gigabit Ethernet, 10G Ethernet) присутствует дополнительное «внутреннее» разделение. Например, возьмем 10 Мбит/с Ethernet. Вот некоторые из стандартов, которые включает этот тип:
Ethernet (10 Мб/с) |
---|
10Base-2 |
10Base-5 |
10Base-T |
10Base-F |
10Base-FL |
При этом различная физическая реализация подключения (разные кабели) приводят к возможности использования разных топологий сети. Для 10Base-5 максимально топорно:
А вот 10Base-T уже может использовать полнодуплексную передачу данных:
Здесь, как видите присутствует устройство под названием сетевой концентратор. Поэтому небольшое лирическое отступление на эту тему.
Зачастую термины сетевой концентратор, сетевой коммутатор и маршрутизатор перемешиваются и могут использоваться для описания одного и того же. Но строго говоря, все эти три термина относятся к абсолютно разному типу устройств:
Возвращаемся к схеме для стандарта 10Base-T… Поскольку для передачи и приема используются физически разные линии, то нет и препятствий для одновременного протекания данных процессов. Принцип же формирования данных остается неизменным практически для всех модификаций Ethernet, к обсуждению чего мы и переходим.
Кадр Ethernet.
Вся передаваемая информация поделена на пакеты/кадры, имеющие следующий формат:
Рассмотрим блоки подробнее:
Все поля, кроме поля данных, являются служебными.
Методика анализа контрольной суммы абсолютно стандартна: отправитель рассчитывает контрольную сумму на основе остальных данных кадра и добавляет рассчитанное значение к этому же отправляемому кадру. Получатель также рассчитывает контрольную сумму на основе принятых данных и сравнивает ее с принятой (которую рассчитывал отправитель). Несовпадение рассчитанного и принятого значений CRC — явный сигнал к тому, что данные повреждены и некорректны.
При этом контрольная сумма в данном случае никоим образом не может помочь в устранении ошибки, она только сигнализирует о ее наличии. В результате принятый кадр целиком считается некорректным. Это, в свою очередь, приводит к необходимости передать ошибочный кадр еще раз.
Кроме этого, возможна еще одна неприятная ситуация, так называемая коллизия — когда несколько узлов начинают передавать данные одновременно. Для предотвращения этого в Ethernet используется технология CSMA/CD — Carrier Sense Multiple Access with Collision Detection — множественный доступ с прослушиванием несущей и обнаружением коллизий. Эта тема тоже довольно-таки интересная, в связи с чем, принято волевое решение посвятить ей отдельную статью 🙂 Поэтому здесь и сейчас на этом не останавливаемся.
В первых по очередности двух полях кадра Ethernet содержатся MAC-адреса узлов сети — передатчика и приемника. Изначально при разработке первых версий технологии было предусмотрено, что любая сетевая карта должна иметь свой уникальный идентификатор. Роль этого идентификатора и играет MAC-адрес, состоящий из 6 байт.
При работе он позволяет идентифицировать все устройства в сети и определить, какому именно из них предназначен тот или иной кадр данных. Распределением MAC-адресов занимается регулирующий комитет IEEE Registration Authority, именно сюда производитель сетевого устройства должен обращаться для выделения ему некоего диапазона адресов, которые он сможет использовать для своей продукции.
И на этой ноте заканчиваем вводную теоретическую часть по Ethernet, в дальнейшем приступим к практическому использованию в своих устройствах. До скорого!