для чего в конструкции кабеля предусмотрен цсэ
Введение в волоконно-оптические кабели. Часть 3
3.3. Ленточные волокна
При такой технологии два или более волоконных световода объединяются упорядоченным образом в плоский модуль. Отдельные световоды связаны в одной плоскости параллельно друг другу с одинаковым шагом. С пленочным ленточным покрытием.
Существует три способа изготовления волоконно-оптических лент:
Ленточные модули объединяют в стопку-матрицу с прямоугольным сечением и помещают в пазы профилированного сердечника кабеля.
Обмотка лентой
Этот способ проиллюстрирован на Рис.5а. Обмотка лентой – это первый способ, разработанный для изготовления волоконно-оптических лент. В такой конструкции световоды склеены в одной плоскости между пленками на основе полиэфирной смолы. Данный способ применялся, например, американской компанией AT&T для создания сетей дальней связи. Однако в последнее время он вытесняется двумя другими способами, обеспечивающими получение волоконно-оптических лент, более устойчивых по отношению к микро- и макроизгибам и характеризующихся меньшим затуханием при колебаниях температуры или механических нагрузках.
Связывание отдельных волокон друг с другом
Этот способ также проиллюстрирован на Рис.5б. При его использовании промежутки между двумя соседними волокнами заполняются акрилатом. Лента может состоять из нескольких (числом до 12) волокон, уложенных параллельно друг другу. При использовании этого способа отдельные волокна легче подготовить к сварке или механическому сращиванию. Недостаток этого метода заключается в том, что волокна, образующие ленту, относительно восприимчивы к механическим воздействиям и поэтому могут быть повреждены.
Заключение всех волокон в общую оболочку
При использовании этого способа все волокна ленты укладываются рядом друг с другом, и все вместе покрываются со всех сторон тонким слоем акрилата, образующим общую оболочку. Число волокон в ленте может быть от 4 до 16. В полученной таким образом ленте волокна заключены в общую полимерную оболочку и, тем самым, связаны между собой (см. рис. 5в). Более толстый слой покрытия из акрилата (общая толщина волокна и покрытия – 0.4 мм) представляет собой эффективный буфер, обеспечивающий более надежную защиту от механических воздействий. Такие ленты удобнее сваривать или сращивать механическим способом, а также помещать в кабель и проводить монтаж на месте.
Рисунок 5. Типы ленточных конструкций.
Ленточные модули возникли и распространены в основном в Японии поскольку минимизируют стоимость работ по стыковке волокон. В России они практически не применяются, поскольку требуют наличия специального дорогостоящего оборудования и обеспечивают худшее, по сравнению с одиночными волокнами, качество стыка. По-видимому, распространение ленточных волокон может начаться в эпоху бурного использования световодов для последней мили (волокно в каждый дом).
Разнообразие областей применения световодов в системах волоконно-оптической связи требует, чтобы были разработаны самые разные конструкции кабелей с соответствующими размерами и материалами. Исходя из применения кабеля, выбираются типы модулей и соответствующая им конструкция сердечника кабеля и защитных покровов. Особое внимание уделяется предотвращению повреждений световодов в кабелях из-за воздействий окружающей среды, таких как перепады температуры и механические нагрузки.
4. Оптический сердечник
Оптический сердечник, который образуется в результате скрутки оптических модулей, называется сердечником модульной скрутки. Сердечник, образованный на основе расположения модулей в пазах профилированного стержня, – профилированный оптический сердечник. Сердечник с центральным расположением модуля, имеющий трубчатую конструкцию называется трубчатый сердечник.
4.1. Сердечник модульной скрутки
4.1.1. Центральный силовой элемент (ЦСЭ) сердечника модульной скрутки
В целях увеличения механической прочности оптических кабелей модули скручивают вокруг центрального элемента, который является силовым элементом кабеля (ЦСЭ). При этом центральный элемент может служить для защиты от продольного изгиба и от растяжения. Поэтому он изготавливается из таких материалов, которые имеют большой модуль упругости и сохраняют устойчивость при колебаниях температуры в определенном диапазоне.
Для исключения металлических элементов в структуре оптического сердечника, в качестве ЦСЭ используется диэлектрический стержень. В большинстве случаев он выполнен из стеклопрутка, который получается в результате склеивания стеклянных нитей (ровингов) с помощью эпоксидной смолы. При особо высоких требованиях к прочности и гибкости ЦСЭ выполняют из арамидного прутка, в котором несущими являются арамидные нити. Однако, широкого распространения арамидный ЦСЭ не получил, из-за высокой удельной стоимости арамида как силового элемента.
4.1.2. Скрутка
Благодаря скрутке световоды в модуле имеют определенное свободное пространство, при перемещении в пределах которого при растяжении, изгибе, сжатии не ухудшаются их передаточные характеристики. Наряду с модулями в различном исполнении, в скрутку могут быть дополнительно включены наполнители, т.е. просто полиэтиленовые элементы (кордели). Часто в комбинированных кабелях элементом скрутки являются изолированные медные жилы. Совокупность силовых и скручиваемых элементов, а также скрепляющей ленты или оболочки вокруг них, если такая имеется, называется сердечником кабеля. Пример расчета геометрических параметров элементов скрутки приведен в Приложении.
Таблица 5. Цветная кодировка модулей.
Кабели с сердечником
По требованию может поставляться с другим цветовым сочетанием
Самой распространенной в технике оптических кабелей является скрутка слоями или послойная скрутка. При этом скручиваемые элементы располагаются концентрически вокруг ЦСЭ в один или несколько слоев (см. Рис.6). Шаг спирали рассчитывается для того, чтобы предотвращать увеличение затухания в кабеле, вызываемое, прежде всего, изгибами кабеля в процессе его изготовления, при прокладке и при установке, а также вследствие колебаний температуры.
Если скручиваются отдельные элементы, например, модули или наполнители, то в этом случае говорят о кабеле повивной скрутки. Если же сердечник кабеля скручивается из элементов, состоящих из скрученных модулей, то такой кабель называется кабелем жгутовой скрутки (см. Рис.6). При использовании кабелей жгутовой скрутки плотность упаковки может быть существенно увеличена.
| |
Рисунок 6. Различные способы скрутки элементов сердечника оптического кабеля.
Если кабель предназначен для наружной прокладки, то пространство между модулями заполняется веществом (гидрофобным наполнителем), придающим кабелю водонепроницаемость по всей его длине. Поверх скрутки накладывается защитная наружная оболочка из полимера.
4.1.3. Деформация растяжения и сжатия.
Наряду с изгибом необходимо ограничивать растяжение и сжатие световодов в модулях с тем, чтобы в заданных диапазонах нагрузок на растяжение и температурных диапазонах в волоконно-оптическом кабеле не возникали недопустимые изменения передаточных характеристик и опасность повреждения световодов. Световоды в модулях со свободной укладкой волокон могут свободно передвигаться внутри оболочки. В ненагруженном состоянии они располагаются в центре модуля, и их зазор DR (по отношению к защитной оболочке модуля) определяется с учетом внутреннего диаметра di оболочки модуля и наружного диаметра df световода (см. Рис.7). В случае модуля со свободной укладкой, в котором находятся несколько световодов, за наружный диаметр df следует принять диаметр воображаемой окружности, охватывающей световоды как можно плотнее.
Относительное изменение длины DL/L волоконно-оптического кабеля, т.е. допустимое удлинение eK или сжатие eTK (сжатие, обусловленное температурой) кабеля с повивной скруткой радиусом R и шагом S равно:
Рисунок 7. Размеры и положение волокна в модуле в ненагруженном состоянии.
Чтобы вычислить максимально допустимое растягивающее усилие Fmax необходимо знать площади поперечного сечения A материалов, используемых в кабеле, и значения их модуля Юнга Е (модуля продольной упругости). Тогда сумма всех произведений EiAi, умноженных на максимально допустимое удлинение кабеля eK, дает максимальное растягивающее усилие для кабеля, при котором световоды не подвергаются механическому напряжению:
На Рис.8 показаны различные состояния световода в полой оболочке. Без какого-либо напряжения длина световода и оболочки одинаковая (а). При растяжении за счет растягивающего напряжения волоконно-оптического кабеля световод смещается в направлении внутренней стороны полой оболочки (б), при этом сначала ее не касается и не подвергается деформациям. Удлинение кабеля передается на световод только при величине, превышающей примерно 0,5 %, в зависимости от размеров полой оболочки. Реакцией световода будет повышение затухания.
Рисунок 8. Различное положение волокон в модуле
При низких температурах имеет место обратное явление. Полимер, из которого сделана оболочка модуля, сжимается. Поэтому, при охлаждении кабеля происходит его сжатие, и световод движется к внешней стороне полой оболочки (в).
4.2. Профилированный оптический сердечник
Некоторые кабели и во время, и после прокладки постоянно подвергаются воздействию раздавливающих усилий. Для защиты волокон в этих кабелях должны быть приняты специальные меры. С этой целью было разработано несколько различных видов сердечников. Большинство из них являются профилированными сердечниками, т.е. сердечниками, снабженными пазами (см. Рис.9).
Все три вида сердечников обычно изготавливаются из полипропилена. Они получаются путем экструзии, причем их длина достигает 25 ÷ 30 км. ЦСЭ, как правило, делается из стали или из пластмассы, армированной стекловолокном. У всех видов таких сердечников имеется по 6 ÷ 12 пазов, в каждом из которых помещается от 1 до 16 волокон.
В зависимости от размеров и формы этих углублений в центральном элементе в них могут свободно помещаться один или несколько световодов – отдельно или в виде ленточной конструкции. Как и в случае с модулями, эти пазы заполняются компаундом. В случае если требуется конструкция кабеля без наполнителя, водонепроницаемость по длине может быть обеспечена с помощью водоблокирующей ленты.
Рисунок 9. Профилированный сердечник оптического кабеля
Для дальнейшего увеличения числа световодов в кабеле, в пределах одной общей внешней оболочки могут быть свиты по жгутовому принципу несколько отдельных кабельных элементов с профилированным стержнем. Преимуществом данной конструкции в сочетании с ленточной компоновкой кабелей с большим количеством световодов (более 100) является, во-первых, большая плотность упаковки, а, во-вторых, упрощенная технология соединения вследствие упорядоченного размещения световодов.
Данный вид сердечника очень распространен у зарубежных производителей (особенно у Ericsson – изобретателя профилированного оптического сердечника), но в России распространения не получил. Причиной оказалось как отсутствие опыта производства профилированных сердечников, так и необходимость специального оборудования, загрузка которого не гарантируется. Высокую стойкость к раздавливающим усилиям – основное преимущество профилированного сердечника – российские производители компенсируют толщиной стенки оптических модулей и увеличением толщины и жесткости первичной оболочки, накладываемой непосредственно на сердечник модульной скрутки.
Конструкция волоконно-оптического кабеля
Оптоволоконный кабель был разработан специально для передачи данных на большие расстояния с высокой скоростью. Состоящий из одной или нескольких нитей стекла толщиной с человеческий волос, заключенных в изолированную внешнюю оболочку, оптический кабель обеспечивает более высокую пропускную способность, чем другие виды кабеля, и способен передавать данные на большие расстояния. Эти кабели отвечают за поддержку большинства мировых телефонных систем, кабельного телевидения и Интернета.
Конструкция оптоволоконного кабеля
Конструкция волоконно-оптических кабелей выполняет задачу защиты внутренней сердцевины волокна, по которой передается световой сигнал. Она включает в себя сердцевину волокна, оболочку, первичное покрытие, силовые элементы (или волокна, обеспечивающие буферное усиление) и оболочку кабеля.
Основные различия конструкции
Сравнение симплексного и дуплексного коммутационного кабеля

Симплексный волоконно-оптический кабель состоит из одной жилы из пластика или стекловолокна. Обычно он используется, когда применяется мультиплексный сигнал данных или когда между устройствами требуется только одна линия передачи и приема. С другой стороны, дуплексный оптоволоконный кабель с застежкой-молнией состоит из двух жил, соединенных тонкой тканью, и обычно используется там, где для дуплексной связи между устройствами необходимы отдельные передача и прием.
Как многомодовые, так и одномодовые патч-корды могут быть дуплексными или симплексными, а дуплексные с застежкой-молнией и симплексные кабели имеют плотную буферизацию и имеют оплетку из волокон, усиленных кевларом.
Сравнение кабеля распределительного типа и кабеля коммутационного типа
Обычно небольшие с физической точки зрения распределительные кабели состоят из волокон, плотно связанных друг с другом в одной оболочке. Затем их устанавливают и укрепляют стекловолокном или кевларом. Распределительные кабели можно использовать как в горизонтальных, так и в вертикальных пространствах. Хотя возможно прямое оконцовывание волокон в кабеле распределительного типа, следует помнить, что волокна в жгуте не армируются по отдельности и, следовательно, должны быть заделаны внутри шкафа, корпуса волокна, распределительной коробки или коммутационной панели.
С другой стороны, кабели коммутационного типа имеют более крупную и прочную конструкцию, чем кабели распределительного типа. Подходящие как для статического, так и для стоякового пространства, кабели коммутационного типа состоят из пучка отдельных симплексных кабелей.
Сравнение кабеля со свободными трубками и кабеля с плотной буферизацией
Кабели со свободными трубками ( loose tube) подходят для использования на открытом воздухе и рассчитаны на работу в суровых погодных условиях, в том числе в местах с высокой влажностью. Частично жесткие трубки или защитные рукава защищают оболочку, сердцевину волокна и покрытие, а сами волокна дополнительно защищены от влаги с помощью водостойкого геля. Сужаясь и расширяясь при изменении температуры, кабельная разводка с гелиевым наполнением защищает от конденсации и воды, но это не идеальный выбор для внутреннего пространства.
Ленточный кабель

Вариантом конструкции с плотным буфером является использование ленточного кабеля. Группа покрытых волокон размещается параллельно, а затем инкапсулируется в пластик, образуя многоволоконный ленточный кабель. Отдельные ленты могут содержать от 5 до 12 волокон, и несколько лент могут быть сложены вместе, чтобы сформировать сердцевину. При этом надо учитывать, что установочные усилия обычно неравномерно распределяются по ширине ленты, поэтому отдельные волокна могут иметь разную деформацию, что приводит к чрезмерным потерям и повреждению волокна.
Кабели двойного назначения для использования внутри и вне помещений
Благодаря технологии для защиты от утечки влаги и буферным трубкам, заполненным гелем, чтобы остановить миграцию влаги, универсальный кабель идеально подходит для использования в стояках, лотках и воздушных пространствах. Он заключен в наружную оболочку с верхним слоем из арамидной пряжи и слоем огнезащитного материала, защищающим сердечник и трос.
Бронированный кабель

Бронированный кабель подходит для использования практически в любом месте. Защищенный от грызунов и суровых условий он имеет прочную металлическую бронированную оболочку для дополнительной защиты. Такая конструкция не требует трубопроводов, что позволяет сэкономить деньги и время на установку по сравнению с прокладкой оптоволоконного кабеля через внутренние каналы.
Кабель, устойчивый к грызунам и воде, предназначен для работы в экстремальных погодных условиях и заканчивается в пределах 15 метрах от входа в здание.
Гибкий и довольно легкий, несмотря на броню, он на удивление прочен и часто является лучшим выбором для линий связи в помещениях, которые не мешают.
Класс оптоволоконных кабелей
Волоконно-оптические кабели также можно разделить на четыре основные области применения: воздушные, подземные, подводные и кабель для внутренних помещений. Обратите внимание, что список не является исчерпывающим, и некоторые специализированные модели должны сочетать в себе функции нескольких из этих категорий. В связи с этим могут меняться и элементы конструкции.
Если стоит выбор, где купить оптоволоконный кабель, выбирайте надёжного поставщика. Компания « АнЛан » занимает лидирующие позиции на рынке РФ с 2007 года. Разумная цена и европейское качество — то, что отличает продукцию компании от других организаций.
Основные принципы подбора магистральных оптических кабелей
Введение
Современные технологии производства оптического кабеля предлагают потребителю широкий выбор конструкций, который удовлетворяет всем возможным требованиям по условиям эксплуатации. Только на российском рынке представлено больше 50 типов кабеля, а число маркоразмеров исчисляется тысячами. Такое многообразие создает проектировщикам трудности в подборе оптимального технического решения под каждый проект.
Для того, чтобы ускорить процесс выбора конструкции существуют базовые принципы подбора оптического кабеля, применяя которые требуемая марка с ее характеристиками определяется за несколько “шагов”. В статье мы подробно разберем шаги по подбору магистральных оптических кабелей – их всего шесть.
Шаг 1. Определение назначения кабеля
Базовое разделение всех типов оптического кабеля происходит по условиям их прокладки. От способа прокладки кабеля (условий окружающей среды) зависит тип применяемого ВОК. Конкретный тип ВОК (марка кабеля) – это один из вариантов решения нетривиальной задачи инженера «защитить оптическое волокно от повреждающих условий окружающей среды», то есть разработать кабель с правильными защитными покровами и заданными характеристиками. Окружающие условия сильно отличаются в зависимости от способа прокладки ВОК.
Так, основные условия прокладки ОК это:
Часто на конструкцию кабеля накладываются дополнительные ограничения: пожаробезопасность, диэлектрическая/не диэлектрическая конструкция, защита от грызунов, защита ВОК от наведённого потенциала больше 12 кВ и прочие.
В большинстве случаев, условия прокладки кабеля определены в техническом задании или на стадии общих технических решений исходя из соображений экономической эффективности.
Шаг 2. Определение особенностей конструкции
После выбора условий прокладки необходимо определить основные особенности конструкции в зависимости от предъявляемых заказчиком требований. Они отличаются в зависимости от группы кабелей.
Такой тип кабеля имеет самую простую конструкцию (рис.1): отсутствуют дополнительные защитные элементы, кроме оболочки, накладываемой непосредственно на скрученный сердечник из оптических модулей с волокнами.
Основной выбор внутри группы состоит в определении необходимых размеров кабеля: для задувки в обычные пластиковые трубы или для задувки в микротрубки для канализации. Микрокабели имеют меньший вес, диаметр, они более гибкие, но при этом и рассчитаны на меньшую максимально допустимую растягивающую нагрузку, чем «классические» кабели для задувки.
При этом важно, чтобы отношение площади сечения кабеля к площади сечения трубы было не более, чем 2/3, иначе могут возникнуть трудности при задувке.
Рис. 1. Кабель для прокладки в трубы марки ДПО (Инкаб).
Кабельная канализация представляет собой систему подземных сооружений, состоящую из трубопроводов и смотровых устройств (колодцев и коробок). В кабельной канализации осуществляется монтаж и замена кабелей, производство измерений, ремонтных и профилактических работ без вскрытия уличных покровов и раскопок грунта. В таких условиях кабель защищен от механических повреждений и электрохимической коррозии.
Вместе с очевидными достоинствами этот способ прокладки ВОК обладает недостатками: возможное повреждение грызунами, затопление и замерзание затопленных участков, возможные повреждения внешней оболочки ВОК при протяжке кабеля по лоткам. Наличие одного из перечисленных факторов или дополнительных требований обуславливает выбор конкретной конструкции кабеля.
Опасность повреждения грызунами.
Главная «опасность» для кабеля этой группы – повреждение грызунами.
Если такой угрозы нет или она минимальна, то достаточным выбором станет небронированный кабель (см. раздел: для задувки в трубы).
В другом случае, надежная защита от грызунов обеспечивается применением в конструкции гофрированной стальной ленты (рис. 2) или стальных проволок (см. раздел: кабели для укладки в грунт). Количество запросов на второй вариант (со стальными проволоками) крайне низкое.
Рис. 2. Лёгкий кабель для прокладки в кабельную канализацию марки ТОЛ (Инкаб).
Диэлектрические конструкции.
В редких ситуациях требуется кабель, который бы защищал от грызунов и обладал при этом диэлектричекими свойствами. В таком случае возможно применение специальных репеллентов в оболочке кабеля, отпугивающих грызунов, либо применение стеклонитей, наложенных поверх сердечника и промежуточной оболочки кабеля. Второй вариант, согласно исследованиям, более эффективный, т.к. стеклонити являются физическим барьером для грызунов.
Тип расположения оптического модуля.
Если говорить о самом распространенном способе защиты – гофрированной ленте, то здесь наиболее популярным решением является применение одномодульных конструкций (если число волокон не превышает 24) или применение легких конструкций со скрученным сердечником без промежуточной оболочки для многоволоконных магистралей.
Наличие промежуточной оболочки.
Конструкции с промежуточной оболочкой являются более габаритными и дорогими, существенно не улучшая эксплуатационные характеристики, однако также находят применение у ряда потребителей, выбирающих надёжные классические решения.
Самый распространённый способ строительства магистральных сетей между населёнными пунктами там, где отсутствует кабельная канализация, и нет возможности подвеса линии – это укладка волоконно-оптического кабеля в грунт. Этот способ более дорогостоящий и длительный, по сравнению со строительством линии по опорам ЛЭП, но бывает единственным возможным. Такая линия связи превосходит подвесную по надёжности и срокам эксплуатации.
К сожалению, общепринятых нормативных документов, определяющих требуемые характеристики к оптическим кабелям в грунт исходя из конкретных условий прокладки, не существует. На выбор конструкции влияют две основные технические характеристики: стойкость к раздавливающим нагрузкам и максимально допустимая растягивающая нагрузка. Исходя из этих данных определяют необходимость усиления конструкции, материал брони, тип оптического модуля.
Металлическая или диэлектрическая броня.
Металлическая броня подразумевает применение стальных оцинкованных проволок, скрученных вокруг оптического сердечника. Данное решение классическое и наиболее популярное.
Диэлектрическая броня подразумевает применение стеклопластиковых прутков. Такое решение более дорогое, но в некоторых случаях является единственно возможным. Применяется, когда требуется нечувствительность к электромагнитным полям: для прокладки на территории электрических подстанций, в охранной зоне ЛЭП, при пересечении ЛЭП, рядом с силовыми кабелями и т.п.
Усиление конструкции за счет дополнительного слоя брони.
Классическое решение для прокладки в простых грунтах предполагает использование одного слоя брони (рис. 3). В большинстве случаев этого достаточно для обеспечения надёжной защиты от механических воздействий на кабель.
Рис. 3. Стандартный кабель для прокладки в грунт марки ДПС (Инкаб).
Однако в случае прокладки кабеля в сложных грунтах (скальных, мерзлотных и т.п.) проектной организацией может приниматься решение об обеспечении более надёжной защиты и использования двойного повива силовых элементов (стальных проволок или стеклопластиковых прутков).
Повивы скручиваются в разные стороны. Это обеспечивает лучшие характеристики по стойкости к растяжению и раздавливанию в сравнении с конструкциями на основе одного повива.
Тип оптического модуля
Центральный оптический модуль является более экономичным решением, но имеет ограничение по числу волокон: не более 24.
Скрученный сердечник не имеет ограничения по числу волокон, является классической конструкций, как правило, применяемой на основных магистралях.
Дополнительная защита от влаги
Зачастую при прокладке в заболоченных местностях, а также по дну рек, дополнительно в конструкции кабеля применяется алюмополимерная лента. Ее применение способно предотвращать прохождение к волокну влаги и до некоторой степени – водорода. Стоит отметить, что после принятых мер по защите структуры кварцевого стекла. водород для современных волокон неопасен.
Таким образом, основным и практически единственным эффектом, достигаемым при применении алюмополимерной оболочки, является повышение долговременной механической прочности волокна в условиях воздействия влаги и высоких ненормативных уровней натяжение поверхности волокна.
При правильно сконструированном и изготовленном кабеле и при соблюдении условий его эксплуатации безотказная работа кабеля может быть гарантирована без применения алюмополиэтиленовой оболочки.
Подвесные оптические кабели применяются для организации линии связи между опорами линий электропередач широкого класса напряжений (0,4-220 кВ), опорами освещения и специальными опорами для связи, между зданиями и сооружениями.
Способ подвеса оправдан по причине сравнительно высокой скорости строительства линии и отсутствия необходимости применения большого количества специальной техники. Исходя из этого подвес – самый распространённый способ строительства магистральных сетей ВОЛС.
Но у него есть и недостатки: подвесной кабель в течение всего срока службы постоянно подвергается воздействиям внешних атмосферных факторов (дождь, солнце, ветер, гололёд). Иногда нагрузки становятся критическими – максимально допустимыми. Это подтверждается примерами из практики: например, обрыв кабеля по причине аномальных природных явлений (рис. 4). Но чаще всего обрыв кабеля связан не с непогодой (рис. 5), а по причине того, что на стадии проектирования конструкция кабеля и арматура подобраны неверно.
Примеров неправильного подбора множество. Цена ошибки слишком высока. Поэтому очень важен правильный подбор кабеля и арматуры. Корректно подобранная система “кабель-арматура” обеспечит необходимую работоспособность сети.
Рис. 4. Гололёдно-изморозевые отложения на элементах ВЛЭП.
Рис. 5. ВОК лёг на землю под тяжестью гололёда.
Подвесные кабели делятся на два больших типа:
– с вынесенным силовым элементом типа «8» – ссылка
Подвесные кабели с вынесенным силовым элементом.
Кабели типа «8» бывают с металлическим силовым элементом (стальной трос) и с диэлектрическим (стеклопластиковый пруток). С центральным оптическим модулем и со скрученными модулями (рис.6).
При этом данный тип кабелей обладает рядом некоторых недостатков:
– использование стального троса запрещено при подвесе на линиях электропередач. Возможно наведение потенциала электрического поля на металл и опасность поражения электрическим током при работах с кабелем. Имеются случаи попадания молнии и полного выгорания всей строительной длины кабеля, а также выхода приёмо-передающей аппаратуры из строя.
– зачастую с данным типом кабелей используют самые дешёвые клиновые зажимы, несоответствующие по характеристикам используемому кабелю, с малой площадью контакта зубьев с тросом. Это приводит к сползанию оболочки с силового элемента клиньями зажима и выходу кабеля из строя даже при незначительном механическом растяжении. Имеются случаи, когда для диэлектрического силового элемента использовались несоответствующие клиновые зажимы с металлическими зубьями, ломающими стеклопруток. В целом корректный подбор арматуры для любых подвесных кабелей имеет принципиальное значение для обеспечения долговременной и надежной эксплуатации.
– ввиду разности температурных коэффициентов расширения вынесенного силового элемента и оптического сердечника, а также неспособности диэлектрического прутка сохранять сопротивление сжатию при изгибе, в бухтах запаса при отрицательных температурах может происходить неконтролируемый прирост затухания, если они не намотаны на жесткую оправку с должным натяжением.
– сечение кабеля типа «8» приводит к повышенной «парусности», увеличению нагрузок от ветрового давления и льда, а также частому ненормативному осевому закручиванию при сбрасывании петель кабеля через щеку барабана.
– в центральном оптическом модуле возможно «хождение» оптических волокон из муфты или в муфту, если перед ней не обеспечить бухту запаса небольшого диаметра.
Таким образом происходит постепенный переход в сторону отказа от использования кабеля типа «8», особенно среди крупных операторов связи. Небольшие операторы, из-за несколько большей экономической привлекательности строительства, по-прежнему продолжают использовать кабели данного типа. Однако необходимо иметь ввиду, что потенциально это может приводить к определенным осложнениям при эксплуатации, а также возможным затруднениям, если сеть связи планируется в будущем продать более крупным игрокам на рынке.
Рис. 6. Кабель подвесной типа «8» с металлическим выносным элементом и центральным оптическим модулем марки ТПОм (Инкаб).
Круглые самонесущие кабели
Круглые самонесущие кабели не обладают вышеперечисленными недостатками. Они симметричные, диэлектрические, а использование спиральных зажимов обеспечивает большую площадь контакта с кабелем, повышая надёжность.
Самонесущие кабели первично разделяются по типу применяемых силовых элементов: арамидные нити (рис. 7) и стеклонити.
Для упрощения подбора сравним эти варианты исполнения по нескольким факторам:
Диаметр и вес. Кабель на арамидных нитях несколько меньше в диаметре и легче в сравнении со стеклонитями.
Запас прочности на разрыв. Стеклонити обладают меньшим запасом на разрыв. У арамидных нитей двукратный запас прочности на разрыв по отношению к максимально допустимым нагрузкам.
Механические свойства при растяжении. Арамидные нити обладают лучшими механическими свойствами при растяжении через систему «зажим-оболочка-нити». Максимальные нагрузки для кабелей со стеклонитями: не более 15 кН, у арамидных нитей до 40 кН и выше.
Подверженность влиянию температур. Кабели с арамидными нитями за счет более низкого коэффициента температурного расширения меньше подвержены влиянию температур (растяжению и сжатию).
Аттестация ПАО «Россети». Арамидные нити разрешены для подвеса на ЛЭП 35 кВ и выше в ПАО «Россети», стеклонити запрещены.
Стоимость. Если исходить из стоимости, то кабели с арамидными нитями дороже, чем со стеклонитями.
Таким образом, выбирать круглый самонесущий кабель с арамидными нитями следует:
— при строительстве магистральных линий связи между городами или крупных магистральных линий внутри города;
— при подвесе на ЛЭП;
— если требуется многоволоконная конструкция.
Основные показания к применению кабелей со стеклонитями:
— сети внутри городских районов;
— распределительные линии до отдельных домов;
— подвес между домами, опорами освещения, линии электропередач 0,4-10 кВ;
Круглые самонесущие кабели можно классифицировать по наличию или отсутствию промежуточной оболочки: «стандартные» и «лёгкие», соответственно.
Использование стандартных кабелей с арамидными нитями возможно со стойкостью к растягивающим нагрузкам вплоть до 40 кН и выше, в то время как использование лёгких кабелей ограничено, как правило, 10 кН из-за несколько меньшей стойкости к раздавливающим усилиям от зажимов и возможностью проскальзывания нитей относительно сердечника, если нагрузки достаточно велики.
Следовательно, исходя из экономической целесообразности, наиболее популярными марками самонесущих кабелей являются:
– с промежуточной оболочкой («стандартные») и с арамидными нитями: для крупных магистральных линий, на ЛЭП 35 кВ и выше с большим числом волокон
– без промежуточной оболочки («легкие») и со стеклонитями: для небольших сетей, на ЛЭП 0,4-10 кВ и небольшим числом волокон.
Рис. 7. Кабель подвесной самонесущий стандартный с арамидными нитями и промежуточной оболочкой марки ДПТ (Инкаб).
Еще одна разновидность круглых подвесных кабелей без промежуточной оболочки – «микро» самонесущие кабели (рис. 8). Появление таких кабелей было обусловлено потребностью их применения на старых и изношенных опорах линий 0,4-10 кВ, где принципиальное значение имеет как можно меньшая нагрузка на опоры от дополнительного элемента в виде оптического кабеля. Это обусловлено тем, что передача электрической энергии имеет безусловное приоритетное значение и важно, чтобы при возможном обледенении не «завалились» опоры, оборвав тем самым провода. Такие кабели доступны на рынке, имеют стойкость к растяжению не более 3 кН, что, ввиду их малых габаритных размеров и, следовательно, меньшей воспринимаемой нагрузки от льда и ветра, как правило, достаточно для обеспечения подвеса на пролетах 50-70 метров в зависимости от конкретной климатической зоны.
Рис. 8. Кабель подвесной самонесущий микро со стеклонитями без промежуточной оболочкой марки микроДОТс (Инкаб).
Особые случаи монтажа.
Подвес – закопать. Нередки случаи, когда нет возможности выполнить всю трассу подвесом и необходимо различные переходы (например, дороги) пройти под землей. В этом случае возникает вопрос: либо ставить муфты до и после перехода и делать вставку специализированным кабелем в грунт, либо проложить самонесущий кабель в земле. Однако самонесущие оптические кабели не предназначены для прокладки в земле или грунте, т.к. не имеют специальной брони для защиты от сдавливающих усилий грунта или возможного вмерзания в лёд. Самонесущий кабель можно проложить в трубу ПНД, которая будет лежать в земле. Это обеспечит необходимую защиту от воздействия грунтов. Вход в трубу необходимо загерметизировать, исключив проникновение воды внутрь трубы.
Кабель в грунт – подвесить. И обратная ситуация, когда кабель для прокладки в грунт в ряде ситуаций требуется подвесить на небольшом расстоянии. Такие кабели допускается подвешивать на небольшие пролеты, но при этом нужно учитывать их увеличенный вес по сравнению с самонесущими кабелями. Эти кабели рекомендуется монтировать с увеличенной стрелой провеса и с дополнительным запасом прочности 20-30%, так как это не основное их назначение.
Шаг 3. Выбор типа оболочки кабеля.
Оболочка из полиэтилена
Оболочка магистральных оптических кабелей может быть исполнена из полиэтилена низкой, средней и высокой плотности (ПЭНП, ПЭСП, ПЭВП соответственно). Рассмотрим подробнее каждый из видов.
Полиэтилен низкой плотности имеет ряд существенных недостатков: низкая прочность и химическая стойкость, «стекание» оболочки при высокой температуре. Плюс: хорошо разделывается при монтаже.
Полиэтилен высокой плотности очень прочен, обладает высокой механической и химической стойкостью, но неудобен в разделке, склонен к появлению трещин.
У полиэтилена средней плотности – промежуточные характеристики: повышенная стойкость к неблагоприятным воздействиям окружающей среды, необходимая гибкость при монтаже при отрицательных температурах, стойкость к воздействию ультрафиолетового излучения.
Из описания очевидно, что для оптических кабелей максимально подходящей является оболочка из полиэтилена средней и высокой плотности.
При этом характеристики таких полиэтиленов должны соответствовать ряду дополнительных свойств, делающими их пригодными к использованию в оптических кабелях, например, обладать низкой усадкой при экструзии. К сожалению, на рынке отсутствует выбор отечественных полиэтиленов с требуемыми характеристиками. Поэтому широко используется продукция иностранных поставщиков, например, компании «Borealis».
Оболочки, не распространяющие горение
Если кабель необходимо проложить в зданиях и сооружениях или на специальных объектах (электрические подстанции, предприятия, нефтяная и химическая промышленность и т.п.) требуется оболочка не распространяющая горение.
Иногда проектом предусмотрены расширенные требования к оболочке: не распространение горения при групповой прокладке, малодымной и безгалогенной. Это обеспечивает возможность применения кабелей в том числе и в зданиях с массовым пребыванием людей. Согласно ГОСТ, такая оболочка обозначается в маркировке кабеля «нг(А)-HF» и кабели обязательно должны иметь соответствующий сертификат пожарной безопасности.
Стоит отметить, что не рекомендуется использовать кабели с внешней оболочкой «нг(А)-HF» на всём протяжении трассы ВОЛС-ВЛ в качестве основного линейного кабеля, т.к. полиэтиленовая оболочка дешевле и обладает лучшими эксплуатационными характеристиками в сравнении с безгалогенной.
Оболочки из полимерного компаунда (огнестойкие)
В особых случаях возможно применение огнестойких кабелей, которые сохраняют свою работоспособность даже в условиях воздействия пламени и имеют обозначение в маркировке «нг(А)-FRHFLTx» ссылка. Такие кабели применяются, например, в системах пожарного оповещения, а также на особо опасных или ответственных объектах, где требуется обеспечить связь даже в условиях чрезвычайных ситуаций (нефтеперерабатывающие заводы, стадионы и т.п.)
Трекингостойкие оболочки.
При использовании самонесущих оптических кабелей на линиях 35 кВ и выше может возникнуть потребность в применении специальной трекингостойкой оболочки.
Показанием к применению являются:
– если в точке закрепления оптического кабеля потенциал электрического поля выше 12 кВ (но не более 25 кВ). Для этого производятся специальные расчёты электрических полей.
– наличие рядом с ЛЭП загрязняющих факторов: морское побережье, металлургическое производство, угольные шахты и т.п.
Шаг 4. Выбор числа волокон
Как правило, самый простой шаг. Число волокон обычно определено техническим заданием от заказчика. Стоит, однако, заметить, что необходимо учитывать не текущие потребности в пропускной способности, а возможность дальнейшей модернизации и постоянно увеличивающуюся потребность в объёмах передаваемых данных на весь срок эксплуатации, который составляет не менее 25 лет. Так, в начале 90-х годов многие магистральные линии связи имели не более 4 или 8 волокон, что не отвечает текущим потребностям.
Шаг 5. Выбор типа волокна
В магистральных кабелях, как правило применяется стандартное одномодовое волокно, соответствующее стандарту G.652D, отвечающее всем необходимым требованиям по организации связи. Такое волокно доступно на рынке без увеличения цены на кабель.
Стоит отметить, что наиболее перспективным решением для организации связи на одномодовом волокне является использование волокна со следующими характеристиками:
— пониженное затухание на длине волны 1550 нм: до 0,18 дБ/км (вместо 0,22 дБ/км)
— стойкость к изгибу по категории G.657A1
Многомодовые волокна имеют свое ограничение по длине передаваемого сигнала и существенно дороже. Их применение возможно на небольшой сети в пределах одного объекта.
Волокна со смещенной дисперсией (G.655), также в последнее время являются мало употребляемыми в связи с более высокой стоимостью и возможностью использования стандартного одномодового волокна для тех же целей.
Шаг 6. Выбор требуемой стойкости к растяжению
Для монтажа в трубы и кабельную канализацию
Наиболее распространено, что для кабелей для задувки в трубы и прокладки в кабельную канализацию устанавливаются требования по стойкости к растяжению в 1,5 или 2,7 кН.
Для укладки в грунт
Кабели для прокладки в грунт изготавливаются со стойкостью к растяжению в 7 кН (наибольшее распространение) и выше в зависимости от категории и сложности грунтов, вплоть до 80 кН.
Подвесные оптические кабели
Важно отметить, что для определения требуемой стойкости к растягивающим усилиям при подвесе оптического кабеля недостаточно знания только о расстоянии между опорами. Нагрузка, действующая на кабель, помимо расстояния между опорами зависит также от погонного веса кабеля и стрелы провеса. Кроме того, в процессе эксплуатации подвешенный оптический кабель подвергается воздействию температуры, ветра и обледенения. Все это приводит к тому, что значительно изменяются механические растягивающие нагрузки. В связи с этим, нет никакой возможности установить прямую взаимосвязь между расстояниями и допустимой растягивающей нагрузкой.
Определяющими факторами для выбора стойкости к растягивающим нагрузкам являются:
– расстояние между опорами
– высота подвеса кабеля и требуемый габарит до земли
– климатические условия (максимальный ветер и максимальная стенка льда)
Также необходимо обратить внимание на:
– возможные ограничения на растяжение по условиям прочности опор, чтобы в процессе эксплуатации и воздействии нагрузок не произошло их повреждение.
– возможные ограничения на допускаемые отклонения кабеля, чтобы в процессе эксплуатации не произошло их перехлеста с проводами.
Для этого необходимо провести определённые расчёты, которые, как правило, проводит проектная организация. Либо на сайте производителя кабеля можно воспользоваться соответствующими таблицами, облегчающими выбор необходимо кабеля, а также изучить теорию расчётов.
Заключение
Таким образом в данной подробно описаны все шаги для подбора необходимой конструкции магистрального оптического кабеля. Изучив их, проектировщик довольно быстро и без ошибок сможет определиться с конструкцией, которая станет основой для надежной ВОЛС.
Ускорить процесс подбора кабеля также помогут онлайн-конфигураторы, которые выполняют эту задачу в несколько кликов мышки. Результат работы такого конфигуратора – точная маркировка для заказа кабеля и подробная техническая спецификация с необходимыми для проектирования характеристиками. Протестировать такой продукт можно на сайте vols.expert в разделе конфигураторы решений.
Естественно, что каждый проект является уникальным и неповторимым и нет возможности учесть все нюансы и особенности. Поэтому немаловажным фактором, обеспечивающим выбор наиболее оптимальных решений, является опыт специалиста, а также регулярное, систематическое обучение и повышение квалификации. Пройти сертифицированное обучение по курсу «Проектирование ВОЛС» с выдачей документов установленного образца, возможно в учебном центре «ВОЛС.Эксперт».
Дмитрий Гиберт, генеральный директор ООО «Инкаб.Про»
Валерий Рюпин, инженер ООО «Инкаб»