двупреломление минералов что это

Двупреломление

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Двойно́е лучепреломле́ние — эффект расщепления в анизотропных средах луча света на две составляющие. Впервые обнаружен на кристалле исландского шпата. Если луч света падает перпендикулярно к поверхности кристалла, то на этой поверхности он расщепляется на два луча. Первый луч продолжает распространяться прямо, и называется обыкновенным (o — ordinary), второй же отклоняется в сторону, нарушая обычный закон преломления света, и называется необыкновенным (e — extraordinary).

Направление колебания вектора электрического поля необыкновенного луча лежит в плоскости главного сечения (плоскости, проходящей через луч и оптическую ось кристалла).

Нарушение закона преломления света необыкновенным лучом связанно с тем, что скорость распространения света (а значит и показатель преломления) волн с такой поляризацией, как у необыкновенного луча, зависит от направления. Для обыкновенной волны скорость распространения одинакова во всех направлениях.

Можно подобрать условия, при которых обыкновенный и необыкновенный лучи распространяются по одной траектории, но с разными скоростями. Тогда наблюдается эффект изменения поляризации. Например, линейно поляризованный свет, падающий на пластинку можно представить в виде двух составляющих (обыкновенной и необыкновенной волн), двигающихся с разными скоростями. Из-за разности скоростей этих двух составляющих, на выходе из кристалла между ними будет некоторая разность фаз, и в зависимости от этой разности свет на выходе будет иметь разные поляризации. Если толщина пластинки такова, что на выходе из неё один луч на четверть волны (четверть периода) отстаёт от другого, то поляризация превратится в круговую (такая пластинка называется четвертьволновой), если один луч от другого отстанет на пол волны, то свет останется линейно поляризованным, но плоскость поляризации повернётся на некоторый угол, значение которого зависит от угла между плоскостью поляризации падающего луча и плоскостью главного сечения (такая пластинка называется полуволновой).

Природа явления

Качественно явление можно объяснить следующим образом. Из уравнений Максвелла для материальной среды следует, что фазовая скорость света в среде обратно пропорциональна величине диэлектрической проницаемости ε среды. В некоторых кристаллах диэлектрическая проницаемость — тензорная величина, зависит от направления электрического вектора, то есть от состояния поляризации волны, поэтому и фазовая скорость волны будет зависеть от ее поляризации.

Согласно классической теории света, возникновение эффекта связанно с тем, что переменное электромагнитное поле света заставляет колебаться электроны вещества, и эти колебания влияют на распространение света в среде, а в некоторых веществах заставить электроны колебаться проще в некоторых определённых направлениях.

Помимо кристаллов двойное лучепреломление наблюдается и в изотропных средах, помещённых в электрическое поле (эффект Керра), в магнитное поле (эффект Коттона — Мутона), под действием механических напряжений (фотоупругость). Под действием этих факторов изначально изотропная среда меняет свои свойства и становится анизотропной. В этих случаях оптическая ось среды совпадает с направлением электрического поля, магнитного поля, направлением приложения силы.

Источник

Двойное лучепреломление

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

На фото — крупные фрагменты кристаллов поваренной соли (минерал галит) и исландского шпата (минерал кальцит). Внешне они похожи, однако сильно различаются по своим оптическим свойствам.

Кристаллы галита относятся к кубической сингонии, а это означает, что свет распространяется по кристаллу с одной и той же скоростью вне зависимости от направления. Такие кристаллы называются оптически изотропными.

Кристаллы кальцита, наоборот, обладают ярко выраженной оптической анизотропией. Попадая в кристалл, луч света расщепляется на два взаимно перпендикулярно поляризованных луча, которые идут в кристалле с разной скоростью. Один луч имеет скорость на 11,5% выше, чем другой. Из-за этого возникает оптический феномен двойного лучепреломления, или двулучепреломления: каждый из лучей имеет свой показатель преломления и по-разному преломляется в кристалле. Войдя в кристалл в одной точке, два луча выходят в различных местах, да еще и один из них появляется с запозданием. На фотографии хорошо видно, что надпись «КАЛЬЦИТ» за кристаллом выглядит двойной, тогда как с надписью «ГАЛИТ» ничего не происходит.

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Двулучепреломление кристаллом кальцита, лежащим на листе бумаги в клеточку. Фото с сайта en.wikipedia.org

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Двулучепреломление кальцита через вращающийся поляризационный фильтр: можно рассмотреть два состояния поляризации изображения. Рисунок с сайта en.wikipedia.org

Эффект двулучепреломления впервые описал в 1669 году датский ученый Эразм Бартолин (1625–1698). Он обнаружил его именно в кристаллах исландского шпата, которые были привезены моряками из Исландии. Публикация Э. Бартолина вызвала большую критику со стороны современников, так как «Бог создал одну неживую сущность, она не может сама по себе превращаться в две». Но сам феномен двулучепреломления в кальците не давал покоя таким ученым, как Исаак Ньютон, Христиан Гюйгенс, Джордж Стокс и многим другим. Только в самом начале XIX века работы по теории света Томаса Янга (1801 год) и Огюстена-Жана Френеля (1820 год) позволили понять эффект исландского шпата и открыли возможность развития кристаллооптики — науки о поведении света в кристаллах.

Вильям Николь на основе кристаллов кальцита в 1829 году сконструировал первый поляризатор (поэтому поляризаторы часто называют призмами Николя или, сокращенно, николями), а в 1851–1854 году сэр Генри Клифтон Сорби предложил конструкцию первого поляризационного микроскопа, что вызвало научную революцию в целом ряде дисциплин, связанных с изучением природных и синтетических веществ. Поляризационный микроскоп позволяет количественно определять многие оптические константы вещества, в том числе и силу двулучепреломления различных минералов и синтетических материалов.

Источник

Двупреломление как диагностический признак

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

В среди минералов чароититовых пород встречаются имена не только современных геологов, но и исследователей иных специальностей, пик деятельности, которых пришёлся на середину XIX века.

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Среди акцессорных минералов чароитовых пород присутствует такой минерал как дэлиит, названый в 1952 году в честь американского петролога Реджинальда Дэйли (Reginald Aldworth Daly, 1871-1957).

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Этот минерал замечателен и своим названием, отсылающим нас к одному из выдающихся естествоиспытателей конца XVIII – начала XIX веков – Уильяму Хайду Волластону (1766-1828).

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Эканит встречается в чароитовых породах в виде акцессорной примеси мельчайших зёрен, но обуславливает повышенную радиоактивность поделочного камня, так как содержит торий в качестве одного из минералообразующих элементов – Ca2Th(Si8O20).

Источник

Двупреломление. Методы определения двупреломления

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

По отношению к поляризованному свету кристаллы разделяются на две группы: оптически изотропные, обладающие одинаковыми оптическими свойствами по всем направлениям, оптически анизотропные, свойства которых меняются в зависимости от направления.

Луч света, входя в пластинку анизотропного минерала, разлагается на два луча с разными показателями преломления, распространяющиеся с различными скоростями и колеблющиеся во взаимно перпендикулярных плоскостях. Это явление получило название двойного лучепреломления или двупреломления.

Значения D для различных минералов колеблются в довольно широких пределах. Так, для нефелина она равна0,005-0,006, для оливина 0,03500,040, а для кальцита 0,172-0,180.

Луч света, входя в кристалл, раздваивается, и каждая из световых волн распространяется в кристалле с разной скоростью. В результате один луч обгоняет другой, и между ними возникает разность хода (R). Величина разности хода измеряется в миллимикронах и прямо пропорциональна длине пути, пройденного в анизотропной сред, т.е. толщине кристаллической пластинки (d), в нашем случае толщине шлифа, и силе двупреломления данного кристалла (D): R= dD (Ng-Np).

Наличие определенной разности хода при прохождении световых лучей через анализатор обуславливает их интерференцию, вследствие чего зерна минералов при изучении их под микроскопом приобретают интерференционные окраски.

Причем каждому значению разности хода соответствует своя интерференционная окраска.

При определении силы двупреломления пользуются таблицей Мишеля-Леви, которая является графическим выражением зависимости R=dD.

Слева по вертикали отложена толщина шлифа, по горизонтали значения разности хода, каждому отвечает определенная интерференционная окраска.

При увеличении разности хода цветные полоски периодически повторяются, что позволяет разбить их на порядки. К первому порядку относятся цвета серый, белый, желтый, оранжевый и красный. В первом порядке нет синего и зеленого. При изучении интерференционной окраски минерала необходимо уметь определять её порядок. Для этого пользуются «правилом каемок»: по периферии зерна наблюдается серия цветных каемок, последовательно повторяющая цвета таблицы Мишеля-Леви.

Практически для определения силы двупреломления минерала необходимо в шлифе отыскать его зерно с наивысшей интерференционной окраской.

ПОРЯДОК ОПРЕДЕЛЕНИЯ СИЛЫ ДВУПРЕЛОМЛЕНИЯ

1.Выбрать разрез минерала с наивысшей интерференционной окраской.

2.Поставить выбранное зерно на крест нитей, вращением столика микроскопа привести его в положение погасания.

3.От положения погасания повернуть столик на 45ов любую сторону. Этим добиваются максимального просветления минерала, во-первых, и параллельного прорези в микроскопе, куда вводится компенсатор (кварцевый клин), направления колебаний в кристалле, во-вторых.

4.В прорезь микроскопа тонким концом вперед вводить кварцевый клин и наблюдать смену интерференционных окрасок на данном зерне:

§ цвета сменяются последовательно и компенсации не происходит;повернуть столик микроскопа на 90 (или на 45 в противоположную сторону от положения погасания) и снова ввести клин, наблюдая за сменой окрасок до появления темно-серого цвета.

5.Определить, к какому порядку относится данная интерференционная окраска, т.е. установить разность хода в исследуемом минерале. Для этого вынимая клин, по смене интерференционных окрасок на канадском бальзаме определяют порядок того цвета,

6.По таблице Мишель-Леви определить величину двупреломления минерала. По горизонтальной линии, соответствующей толщине шлифа (0,03 мм), находят цвет, который был компенсирован. По проходящей из угла диаграммы линии для этого цвета на верхней части диаграммы смотрят значение двупреломления

Источник

Мир камня. справочник для начинающих. Продолжение

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Светопреломление

Еще в детстве нам не раз приходилось видеть, что палка, под острым углом не до конца погруженная в воду, как бы «переламывается» у водной поверхности. Нижняя часть палки, находящаяся в воде, приобретает иной наклон, чем верхняя, находящаяся в воздухе. Это происходит вследствие преломления света, всегда проявляющегося при переходе светового луча из одной среды в другую, то есть на границе двух веществ, если луч направлен косо к поверхности их раздела.

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Иными словами, в алмазе свет распространяется в 2,4 раза медленнее, чем в воздухе. Показатели преломления драгоценных камней находятся в интервале 1,2-2,6. В зависимости от цвета и месторождения драгоценного камня его преломление может несколько варьировать. Двупреломляющие камни имеют два или даже три показателя светопреломления. Измерение показателей преломления на практике производится с помощью рефрактометра. Их значения непосредственно считываются со шкалы прибора. Однако на обычном рефрактометре можно измерять только показатели преломления не выше 1,80, притом лишь у камней, имеющих плоские грани или фасеты. Для кабошонов специалистам с помощью особых приемов удается получать приближенные данные.

Светопреломление и двупреломление самоцветов и поделочных камней

Камень Светопреломление Двупреломление

Двупреломление

Дисперсия

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Преломление и дисперсия белого света при его прохождении сквозь призму.

Дисперсия бывает хорошо заметна только у бесцветных камней. Природные и синтетические камни с высокой дисперсией (например, фабулит, рутил, сфалерит, титанит, циркон) используются в ювелирном деле как заменители алмаза. В качестве числовой меры дисперсии драгоценных камней обычно принимается разность показателей преломления для длин волн красной (линия В: 687 нм) и фиолетовой (линия G: 430,8 нм) частей спектра.

Дисперсия в интервале В-G

Рутил0,28
Анатаз0,213 и 0,259*
Фабулит0,19
Сфалерит0,156
Касситерит0,071
Джевалит0,063
Демантоид0,057
Меланит0,057
Церуссит0,051
Титанит0,051
Бенитоит0,039 и 0,046*
Алмаз0,044
Циркон0,039
Бенитоит0,046 и 0,039*
Галлиант0,038
Смитсонит0,014 и 0,031*
Эпидот0,03
Танзанит0,03
Гроссуляр0,027
Гессонит0,027
Спессартин0,027
Виллемит0,027
Шеелит0,026
Шпинель0,026
Альмандин0,024
Родолит0,024
Ставролит0,023
Диоптаз0,022
Пироп0,022
Кианит0,02
Перидот0,02
Таафеит0,019
Везувиан0,019
Корнерупин0,018
Рубин0,018
Сапфир0,018
Сингалит0,018
Кальцит0,008 и 0,017*
Кордиерит0,017
Данбурит0,017
Гидденит0,017
Кунцит0,017
Скаполит0,017
Турмалин0,017
Андалузит0,016
Апатит0,016
Датолит0,016
Эвклаз0,016
Александрит0,015
Хризоберилл0,015
Гамбергит0,015
Фенакит0,015
Силлиманит0,015
Аквамарин0,014
Берилл0,014
Бразилианит0,014
Петалит0,014
Изумруд0,014
Смитсонит0,031 и 0,014*
Топаз0,014
Аметист0,013
Аметистовый кварц0,013
Авантюрин0,013
Горный хрусталь0,013
Цитрин0,013
Празиолит0,013
Дымчатый кварц0,013
Розовый кварц0,013
Тигровый глаз0,013
Амазонит0,012
Лунный камень0,012
Ортоклаз0,012
Бериллонит0,01
Канкринит0,01
Лейцит0,01
Обсидиан0,01
Кварцевое стекло0,01
Кальцит0,017 и 0,08*
Флюорит0,007

Спектры поглощения

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

К числу важнейших средств диагностики драгоценных камней принадлежат спектры поглощения. Это разложенные на спектральные цвета полосы световых волн, выходящие из цветного камня. Как уже упоминалось выше, при прохождении сквозь кристалл определенные длины волн (то есть цветовые компоненты) света поглощаются, вследствие чего драгоценный камень и приобретает свой цвет (как результат сложения остаточных волн исходного белого света). Однако человеческий глаз не в состоянии различить все тонкие цветовые оттенки. Нам очень легко обмануться, приняв за драгоценный рубин такие похожие на него по цвету камни, как красный турмалин или красный гранат и даже красное стекло. Однако спектры поглощения (абсорбции) однозначно «разоблачают» эти камни или стекла, которыми, может быть, в самом деле пытались подменить рубин. Ведь большинство видов драгоценных камней имеет весьма характерный, присущий только данному виду спектр абсорбции, отличающийся от спектров других камней числом и расположением вертикальных черных линий или широких полос поглощения.

Особое преимущество этого метода исследования состоит в том, что он позволяет однозначно диагностировать камни одинаковой плотности и близкие по светопреломлению. Метод в равной мере пригоден для определения необработанных камней, кабошонов и даже ограненных камней, вставленных в оправу. Все более широкое приложение метод находит при отделении природных камней от искусственных и от их имитаций.

Наилучшие результаты этот метод дает применительно к интенсивно окрашенным прозрачным цветным камням. Спектры поглощения непрозрачных камней могут быть получены на очень тонких и потому пропускающих свет срезах (как в случае гематита), а также на просвечивающих краях или же с помощью света, отраженного от поверхности камня.

Прибором для наблюдения спектров служит спектроскоп. Он позволяет устанавливать длины волн погашенного, то есть поглощенного света. Единицей измерения длин волн служит нанометр (1 нм = 10-9 м); еще недавно (до 1 января 1980 г.) для этой цели использовался, а потому часто встречается в литературе ангстрем (1 A= 10-10 м = 0,1 нм). Ввиду того, что линии и полосы поглощения не всегда бывают выражены одинаково четко, принято указывать различия в их интенсивности особыми пометами, относящимися к числовым значениям соответствующих длин волн. В нашем случае сильные линии подчеркнуты, например 653,5, а слабые заключены в скобки, например (432,7).

Авантюрин: 682; 649
Агат желтый, искусственно окрашенный: 700; (665); (634)
Азурит: 500
Аквамарин: 537; 456; 427
Аквамарин-максикс: 654; 628; 615; 581; 550
Аксинит: 532; 512; 492; 466; 440; 415
Актинолит: 503; 431,5
Александрит (при зеленой окраске): 680,5; 678,5; 665; 655; 649; 645; 640-555
Александрит (при красной окраске): 680,5; 678,5; 655; 645; 605-540; (472)
Алмаз природный бесцветный до желтого (cape): 478; 465; 451; 435; 423; 415,5; 401,5; 390
Алмаз природный желтовато-коричневый: 576; 569; 564; 558; 550; 548; 523; 493,5; 480; 460
Алмаз природный зеленовато-бурый: (537); 504; (498)
Алмаз синтетический желтый: 594; 504; 498; 478; 465; 451; 435; 423; 415,5
Алмаз зеленый, искусственно окрашенный: 741; 504; 498; 465; 451; 435; 423; 415,5
Алмаз коричневый, искусственно окрашенный: 594; 504; 498; 478; 465; 451; 435; 423; 415,5
Альмандин: 617; 576; 526; 505; 476; 462; 438; 428; 404; 393
Аметист: (550-520)
Андалузит: 553, 5; 550,5; 547,5; (525); (518); (506); (495); 455; 436
Апатит желто-зеленый: 605,3, 602,5; 597,5; 585,5; 577,2; 574,2; 533,5; 529,5; 527; 521; 514; 469; 442,5
Апатит синий: 631; 622; 525; 512; 507; 491; 464
Берилл синий, искусственно окрашенный: 705-685; 645; 625; 605; (587)
Бирюза: (460); 432; 422
Варисцит: 688; (650)
Везувиан желто-зеленый: 465
Везувиан зеленый: 530; 487; 461
Везувиан коричневый: 591; 588; 584,5; 582; 577,5; 574,5
Виллемит: 583; 540; 490; 442,5; 431,5; 421
Ганит: 632; 592; 577; 552; 508; 480; 459; 443; 433
Гроссуляр: 630
Гематит: (700); (640); (595); (570); (480); (450); (424); (400)
Гессонит: 547; 490; 454,5; 435
Гидденит: 690,5; 686; 669; 646; 620; 437,5; 433
Гиперстен: 551; 547,5; 505,8; 482; 448,5
Данбурит: 590; 586; 584,5; 584; 583; 582; 580,5; 578; 576; 573; 571; 568; 566,5; 564,5
Демантоид: 701; 693; 640; 622; 485; 464; 443
Диопсид: 547; 508; 505; 493; 456
Хром-диопсид: (670); (655); (635); 508; 505; 490
Диоптаз: 570; 560; 465-400
Жадеит природный зеленый: 691,5; 655; 630; (495); 450; 437,5; 433
Жадеит зеленый, искусственно окрашенный: 665; 655; 645
Изумруд природный: 683,5; 680,6; 662; 646; 637; (606); (594); 630-580; 477,4; 472,5
Изумруд синтетический: 683; 680,5; 662; 646; 637,5; 630-580; 606; 594; 477,4; 472,5; 430
Кальцит: 582
Кварц синтетический синий: 645, 585, 540, 500-490
Кианит: (706); (689); (671); (652); 446; 433
Кордиерит: 645; 593; 585; 535; 492; 456; 436; 426
Корнерупин: 540; 503; 463; 446; 430
Нефрит: (689); 509; 490; 460
Обсидиан зеленый: 680; 670; 660; 650; 635; 595; 555; 500
Опал огненный: 700-640; 590-400
Ортоклаз: 448; 420
Перидот: (653); (553); 529; 497; 495; 493; 473; 453
Петалит: (454)
Пироп: 687; 685; 671; 650; 620-520; 505
Родонит: 548; 503; 455; 412; 408
Родохрозит: 551; 454,5; 410; 391; 383; 378; 363;
Рубин: 694,2; 692,8; 668; 659,2; 610-500; 476,5; 465; 468,5
Сапфир желтый: 471; 460; 450
Сапфир зеленый: 471; 460-450
Сапфир синий: 471; 460; 455; 450; 379
Серпентин: 497; 464
Силлиманит: 462; 441; 410
Сингалит: 526; 492,5; 476; 463; 452; 435,5
Скаполит розовый: 663; 652
Спессартин: 495; 484,5; 481; 475; 462; 457; 455; 440; 435; 432; 424; 412; 406; 394
Сфалерит: 690; 665; 651
Таафеит: 558; 553; 478
Танзанит: 710; 691; 595; 528; 455
Титанит: 590; 586; 582; 580; 575; 534; 530; 528
Топаз розовый: 682,8
Тремолит: 684; 650; 628
Турмалин зеленый: 497; 461; 415
Турмалин красный: 555; 537; 525-461; 456; 451; 428
Флюорит желтый: 545; 515; 490; 470; 452
Флюорит зеленый: 640; 600,6; 585; 570; 553; 550; 452; 435
Халцедон зеленый, искусственно окрашенный: 705; 670; 645
Халцедон синий, искусственно окрашенный: 690-660; 627
Хризоберилл: 504; 495; 485; 445
Хризопраз природный: 443,9
Хризопраз искусственно окрашенный: 632; 443,9
Хром-энстатит: 688; 669; 506
Циркон нормальный: 691; 689; 662,5; 660,5; 653,5; 621; 615; 589,5; 562; 537,5; 516; 484; 460; 432,7
Циркон гидратированный: 653; (520)
Шеелит: 584
Шпинель природная красная: 685,5; 684; 675; 665; 656; 650; 642; 632; 595-490; 465; 455
Шпинель природная синяя:635; 585; 555; 508; 478; 458; 443; 433
Шпинель синтетическая зеленая: 620; 580; 570; 550; 540
Шпинель синтетическая синяя: 634; 580; 544; 485; 449
Эвклаз: 706,5; 704; 695; 688; 660; 650; 639; 468; 455
Эканит: 665,1; (637,5)
Энстатит: 547,5; 509; 505,8; 502,5; 483; 472; 459; 449; 425
Эпидот: 475; 455; 435

Прозрачность

двупреломление минералов что это. Смотреть фото двупреломление минералов что это. Смотреть картинку двупреломление минералов что это. Картинка про двупреломление минералов что это. Фото двупреломление минералов что это

Блеск

Блеск драгоценных камней возникает вследствие отражения поверхностью камня части падающего на нее света. Блеск зависит от показателя преломления и состояния поверхности камня, но не от его окраски. Чем выше светопреломление, тем сильнее блеск. Более всего ценится алмазный блеск, наиболее распространен стеклянный блеск. Жирный, металлический, перламутровый, шелковистый и восковой блеск у ювелирных камней встречается сравнительно редко. Камни, лишенные блеска, называют матовыми и тусклыми.

Обычно к блеску причисляют и световые эффекты, в основе которых лежит явление полного внутреннего отражения. Дело в том, что нижние фасеты ограненного камня, подобно зеркалам, почти полностью отбрасывают свет, падающий на камень сверху, снова наверх, благодаря чему блеск камня как бы усиливается. Такой суммарный световой эффект на поверхности камня называют сверканием. При бриллиантовой огранке достигается идеальное полное внутреннее отражение и тем самым наиболее яркое сверкание.

Плеохроизм

Плеохроизм

Авантюриновый полевой шпатслабый, либо не плеохроирует
Азуритотчетливый; светло-голубой — темно-голубой
Аквамарин голубойотчетливый; почти бесцветный до светло-голубого, синий до небесно-голубого
зеленыйотчетливый; желто-зеленый до почти бесцветного, коричнево-зеленый
Аксинитсильный; оливково-зеленый, красно-коричневый, желто-коричневый
Актинолитжелто-зеленый, светло-зеленый, голубовато-зеленый
Александритзеленый в дневном свете александрит — отчетливо; оранжево-желтый, изумрудно-зеленый
Аметисточень слабый; фиолетовый — серовато-фиолетовый
Анатазотчетливый; желтоватый, оранжевый
Андалузитсильный; желтый, оливковый, красно-коричневый до темно-красного
Апатит желтыйслабый; золотисто-желтый, желто-зеленый
зеленыйслабый; желтый, зеленый
синийочень сильный; синий, бесцветный
Барит голубойслабый
Бениотиточень сильный; бесцветный, зеленоватый до синего
Берилл золотистыйслабый, лимонно-желтый, желтый
зеленыйжелто-зеленый, сине-зеленый
гелиодорслабый; золотисто-желтый, зеленовато-желтый
морганитотчетливый; бледно-розовый, фиолетово-розовый
Бирюзаслабый
Бразилианиточень слабый
Везувиан желтыйслабый; желтый, почти бесцветный
зеленыйслабый; желто-зеленый, желто-коричневый
коричневыйслабый; желто-коричневый, светло-коричневый
Виллемитразличный
Гидденитотчетливый; голубовато-зеленый, изумрудно-зеленый, желто-зеленый
Гиперстенсильный; гиацинтово-розовый, соломенно-желтый, небесно-голубой
Данбуритслабый; бледно-желтоватый, светло-желтый
Диопсидслабый; желто-зеленый, травяно-зеленый, оливково-зеленый
Диоптазслабый; темно-изумрудно-зеленый, светло-изумрудно-зеленый
Дюмортьеритсильный; черный, красно-коричневый, коричневый
Изумруд природныйотчетливый; зеленый, сине-зеленый до желто-зелено­го
синтетическийжелто-зеленый, сине-зеленый
Касситеритразличный
Кварц темный дымчатыйотчетливый; коричневый, красновато-коричневый
розовыйслабый; розовый, бледно-розовый
Кианитсильный; светло-синий до бесцветного, светло-синий
Кордиериточень сильный; темно-синий, желтый, темный сине-фиолетовый, бледно-синий
Корнерупинсильный; зеленый, желтый, коричневый
Корунд синтетическийотчетливый; сине-зеленый, желто-зеленый
Кунцитотчетливый; аметистово-фиолетовый, бледно-крас­ный, бесцветный
Лазуритсильный; бесцветный, темно-синий
Малахиточень сильный; бесцветный, зеленый
Нефритслабый; желтый до коричневого, зеленый
Ортоклаз желтыйслабый
Пейнитсильный; рубиново-красный, коричнево-оранжевый
Перидот (хризолит)очень слабый; бесцветный до бледно-зеленого, ярко-зеленый, оливково-зеленый
Празем (яшма)очень слабый
Празиолиточень слабый; светло-зеленый, бледно-зеленый (беле­сый)
Пурпуритотчетливый; серовато-коричневый, кроваво-красный
Родонитотчетливый; оранжевый, темно-розовый, алый
Рубинсильный; желтовато-красный, темно-карминово-красный
Санидинслабый
Сапфир желтыйслабый; желтый, светло-желтый
зеленыйслабый; желто-зеленый, зеленовато-желтый
оранжевыйсильный; желто-коричневый до оранжевого, почти бесцветный
синийотчетливый; темно-синий, зеленовато-синий
фиолетовыйотчетливый; фиолетовый, светло-красный
синтетическийтемно-синий, желтый до синего
Силлиманитсильный; светло-зеленый, темно-зеленый, синий
Сингалитотчетливый; зеленый, светло-коричневый, темно-ко­ричневый
Скаполит желтыйотчетливый; бесцветный, желтый
розовыйбесцветный, розовый
Ставролитсильный; желтоватый, желтовато-красный, красный
Танзаниточень сильный; пурпурный, синий, коричневый
Титанит желтыйсильный; бесцветный, желтый, красноватый
зеленыйбесцветный, зеленый
Топаз желтыйотчетливый; лимонно-желтый, медово-желтый, соло­менно-желтый
зеленыйотчетливый; бледно-зеленый, светло-сине-зеленый, зеленовато-белый
коричневыйотчетливый, желто-коричневый, светло-желто-корич­невый
красныйсильный, темно-красный, желтый, алый
обожженныйотчетливый; розовый, бесцветный
розовыйотчетливый; бесцветный, бледно-розовый, розовый
синийслабый; светло-синий, розовый, бесцветный
Турмалин желтыйотчетливый; густо-желтый, светло-желтый
зеленыйсильный; темно-зеленый, желто-зеленый
коричневыйотчетливый; темно-коричневый, светло-коричневый
красныйотчетливый; темно-красный, светло-красный
розовыйотчетливый; светло-красный, красновато-желтый
синийсильный; темно-синий, светло-синий
фиолетовыйсильный; фиолетовый, светло-фиолетовый
Фенакитотчетливый; бесцветный, желто-оранжевый
Хризобериллочень слабый; красный до желтого, желтый до светло-зеленого, зеленый
Хризоколласлабый
Циркон желтыйочень слабый; медово-желтый, коричнево-желтый
зеленыйочень слабый, зеленый, коричнево-зеленый
коричневато-зеленыйочень слабый; розово-желтый, лимонно-желтый
коричневыйочень слабый; красно-коричневый, желто-коричневый
красно-коричневыйочень слабый; красновато-коричневый, желтовато-коричневый
красныйочень сильный; красный, светло-коричневый
синийотчетливый; синий, желто-серый до бесцветного
Цитрин природныйслабый; желтый, светло-желтый
Шеелитразличный
Эвклазочень слабый; зеленовато-белый, желто-зеленый, сине-зеленый
Энстатитотчетливый; зеленый, желто-зеленый
Эпидотсильный; зеленый, коричневый, желтый

Поверхностные оптические эффекты: световые фигуры и цветовые переливы

У многих ювелирных камней наблюдаются световые фигуры в виде определенным образом ориентированных полосок света, а также цветовые переливы поверхности. Ни те, ни другие не зависят, ни от собственной окраски камня или присутствия элементов-примесей, ни от его химического состава. Причины их появления кроются в явлениях отражения, интерференции и дифракции световых волн.

Эффект «кошачьего глаза» присущ камням, представляющим собой агрегаты параллельно сросшихся волокнистых или игольчатых индивидов либо содержащим тонкие параллельно ориентированные полые каналы. Эффект возникает вследствие отражения света на таких параллельных срастаниях (или каналах) и состоит в том, что при повороте камня по нему пробегает узкая светлая полоска, вызывающая в памяти светящийся щелевидный зрачок кошки. Наибольшее впечатление от этого эффекта достигается, если камень отшлифован в форме кабошона, притом так, что плоское основание кабошона располагается параллельно волокнистой структуре камня. Самым ценным считается хризоберилловый кошачий глаз, его и называют просто кошачьим глазом. Но аналогичный эффект встречается у очень многих ювелирных камней. Наибольшей известностью пользуются кварцевый кошачий, соколиный и тигровый глаз. Все другие разновидности кошачьего глаза, кроме хризобериллового, требуют более точного минералогического определения («кварцевый» и т. п.).

Люминесценция

Цвета и интенсивность люминесценции в ультрафиолетовых лучах (при комнатной температуре)

Информация, таблицы и фото Книга «Мир камня» В. Шуман том 2

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *