гликоген что это такое

Гликоген

Содержание

Гликоген в организме [ править | править код ]

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Гликоген — это сложный углевод, который состоит из соединенных в цепочку молекул глюкозы. После приема пищи в кровь начинает поступать большое количество глюкозы и организм человека запасает излишки этой глюкозы в виде гликогена. Когда уровень глюкозы в крови начинает снижаться (например при выполнении физических упражнений), организм с помощью ферментов расщепляет гликоген, в результате чего уровень глюкозы остается в норме и органы (в том числе, мышцы во время тренировки) получают достаточное ее количество для производства энергии.

Гликоген откладывается главным образом в печени и мышцах. Общий запас гликогена в печени и мышцах взрослого человека составляет 300-400 г («Физиология человека» А.С. Солодков, Е.Б. Сологуб). В бодибилдинге имеет значение только тот гликоген, который содержится в мышечной ткани.

При выполнении силовых упражнений (бодибилдинг, пауэрлифтинг) общая усталость наступает в связи с истощением запасов гликогена, поэтому за 2 часа до тренировки рекомендуется съедать богатую углеводами пищу, чтобы восполнить запасы гликогена.

Биохимия и физиология [ править | править код ]

С химической точки зрения гликоген (C6H10O5)n представляет собой полисахарид, образованный остатками глюкозы, связанными α-1→4 связями (α-1→6 в местах разветвления); основной запасной углевод человека и животных. Гликоген (также иногда называемый животным крахмалом, несмотря на неточность этого термина) является основной формой хранения глюкозы в животных клетках. Откладывается в виде гранул в цитоплазме во многих типах клеток (главным образом печени и мышц). Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы. Гликогеновый запас, однако, не столь ёмок в калориях на грамм, как запас триглицеридов (жиров). Только гликоген, запасённый в клетках печени (гепатоциты) может быть переработан в глюкозу для питания всего организма. Содержание гликогена в печени при увеличении его синтеза может составить 5-6% от массы печени. [1] Общая масса гликогена в печени может достигать 100—120 граммов у взрослых. В мышцах гликоген перерабатывается в глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), в то же время его общий мышечный запас может превышать запас, накопленный в гепатоцитах. Небольшое количество гликогена обнаружено в почках, и ещё меньшее — в определённых видах клеток мозга (глиальных) и белых кровяных клетках.

В качестве запасного углевода гликоген присутствует также в клетках грибов.

Метаболизм гликогена [ править | править код ]

При недостатке в организме глюкозы гликоген под воздействием ферментов расщепляется до глюкозы, которая поступает в кровь. Регуляция синтеза и распада гликогена осуществляется нервной системой и гормонами. Наследственные дефекты ферментов, участвующих в синтезе или расщеплении гликогена, приводят к развитию редких патологических синдромов — гликогенозов.

Регуляция распада гликогена [ править | править код ]

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Распад гликогена в мышцах инициирует адреналин, который связывается со своим рецептором и активирует аденилатциклазу. Аденилатциклаза начинает синтезировать циклический АМФ. Циклический АМФ запускает целый каскад реакций, которые в конечном итоге приводят к активации фосфорилазы. Гликогенфосфорилаза катализирует распад гликогена. В печени распад гликогена стимулируется глюкагоном. Этот гормон секретируют а-клетки поджелудочной железы при голодании.

Регуляция синтеза гликогена [ править | править код ]

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Синтез гликогена инициируется после связывания инсулина со своим рецептором. При этом происходит аутофосфорилирование остатков тирозина в рецепторе инсулина. Запускается каскад реакций, в которых поочередно активируются следующие сигнальные белки: субстрат-1 инсулинового рецептора, фосфоинозитол-3-киназа, фосфоинозитол-зависимая киназа-1, протеинкиназа АКТ. В конечном итоге ингибируется киназа-3 гликогенсинтазы. При голодании киназа-3 гликогенсинтетазы активна и инактивируется только на короткое время после приема пищи, в ответ на сигнал инсулина. Она ингибирует гликогенсинтазу путем фосфорилирования, не позволяя ей синтезировать гликоген. Во время приема пищи инсулин активирует каскад реакций, в результате которого ингибируется киназа-3 гликогенсинтазы и активируется протеинфосфатаза-1. Протеинфосфатаза-1 дефосфорилирует гликогенсинтазу, и последняя начинает синтезировать гликоген из глюкозы.

Протеинтирозинфосфатаза и ее ингибиторы

Как только прием пищи заканчивается, протеинтирозинфосфатаза блокирует действие инсулина. Она дефосфорилирует остатки тирозина в рецепторе инсулина, и рецептор переходит в неактивную форму. У больных диабетом II типа активность протеинтирозинфосфатазы чрезмерно повышена, что приводит к блокированию сигнала инсулина, и клетки оказываются невосприимчивы к инсулину. В настоящее время проводятся исследования, направленные на создание ингибиторов протеинфосфатазы, с помощью которых станет возможным разработать новые методы лечения в лечении диабета II типа.

Восполнение запасов гликогена [ править | править код ]

Большинство зарубежных специалистов [2] [3] [4] [5] [6] акцентирует внимание на необходимости возмещения гликогена как главного источника энергии для обеспечения мышечной активности. Повторные нагрузки, отмечается в этих работах, могут вызывать глубокое истощение запасов гликогена в мышцах и печени и отрицательно сказываться на результативности спортсменов. Пища с высоким содержанием углеводов увеличивает запас гликогена, энергетический потенциал мышц и улучшает общую работоспособность. Большая часть калорий в день (60-70%), по наблюдениям В. Shadgan, должна приходиться на углеводы, которые обеспечивают хлеб, крупы, зерновые культуры, овощи и фрукты.

Источник

Что такое гликоген, как он влияет на наши тренировки и можно ли увеличить его запасы в организме?

Гликоген – это полисахарид (длинная цепочка углеводов), который хранится в печени и скелетных мышцах и является источником глюкозы в периоды мышечной активности или отсутствия пищи.

В 1920-х годах стало очевидно, что углеводы выступают важным источником топлива для тренировки мышц. Чуть позже было доказано, что концентрация глюкозы в крови связана с утомляемостью во время марафонского бега, и что увеличение потребления углеводов перед забегом и питание по ходу дистанции предотвращали слабость и утомляемость.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Несмотря на эти наблюдения и гораздо более раннее открытие гликогена в 1858 году, связь между содержанием углеводов в рационе, уровнем полисахаридов в мышцах и способностью выполнять больше физической работы подтвердилась лишь в 1960-х годах, когда группа скандинавских ученых воспользовалась методом мышечной биопсии (отсечение небольшого образца ткани для изучения), чтобы установить, что содержание мышечного гликогена оказывает значительное влияние на работоспособность.

Роль гликогена в организме

Способность спортсменов тренироваться день за днем ​​в значительной степени зависит от адекватного восполнения запасов гликогена в организме – процесса, который требует потребления достаточного количества углеводов с пищей и адекватного времени отдыха. Попытка новичков тренироваться несколько раз в день и последующее чувство усталости в том числе связано с исчерпаемостью запасов гликогена, которые дают нам необходимую энергию в процессе тренировок.

При планировании тренировочного процесса важно учитывать не только сами тренировки, но и сбалансированное питание и отдых. Также необходимо понимать, как конкретный вид спорта расходует запасы энергии.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Например, спорт на выносливость (бег, велоспорт, плавание, лыжи) выжигает значительные запасы углеводов и требует особого внимания к правильному питанию после тренировок, особенно длительных и интенсивных.

Где накапливается гликоген и как восполнить его запасы

Гликоген преимущественно накапливается в печени и скелетных мышцах. При этом данные депо (совокупный объем накопленных полисахаридов) выполняют разные функции и по разному питают организм.

Гликоген печени в основном поставляет глюкозу в кровоток во время периодов голодания, а тот, что хранится в скелетных мышцах, обеспечивает глюкозой мышечные волокна во время физической нагрузки. Следовательно, его содержание в печени уменьшается, когда вы долго не употребляете углеводы, а в мышцах концентрация полисахаридов падает после продолжительных и интенсивных тренировок.

Гликоген в печени преимущественно восстанавливается сразу после приема пищи. Этот процесс называется прямым синтезом гликогена.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

С мышцами все немного сложнее. Сразу после физической нагрузки мышечные волокна, которые были задействованы в работе, метаболически подготавливаются к быстрому гликогенезу (процессу синтеза полисахаридов из глюкозы). Проще говоря, использование гликогена во время упражнений запускает его синтез в период восстановления.

Когда после тренировки углеводы попадают в организм с пищей, отработавшие на полную мышцы начинают усиленно поглощать глюкозу из еды, заполняя гликогеновые депо. Эта повышенная чувствительность может длиться до 48 часов. Именно поэтому важно после изматывающей тренировки сразу съесть что-то с высоким содержанием углеводов.

Особенно важно правильное питание во время многодневных соревнований, например, в велогонках. Если у спортсмена есть хотя бы 6 часов отдыха между этапами, то употребление углеводов из расчета 1-1,2 г на килограмм веса в час позволит восполнить до 80% опустевших депо к старту следующего отрезка гонки.

Признаки и причины низкого уровня гликогена

Низкий уровень полисахаридов в организме будет выражаться в быстрой утомляемости при выполнении физических упражнений и умственной работе. Решить эту проблему поможет питание, богатое углеводами, и отдых.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Также встречаются метаболические заболевания – гликогенозы, 1 случай на 100-500 тысяч новорожденных. Эти нарушения обмена веществ вызваны дефицитом ферментов, влияющих на синтез гликогена в мышцах и клетках печени. Они проявляются в виде быстрой мышечной утомляемости, судорог при занятиях спортом и даже миопатии (поражениях мышц и нервов).

Можно ли повысить запасы гликогена и как?

Физические упражнения способствуют накоплению гликогена после тренировок. В задействованных в ходе занятий мышцах содержание полисахаридов во время восстановления быстро увеличивается, достигая со временем более высокого уровня, чем до начала тренировок (эффект суперкомпенсации). Соответственно, у регулярно тренирующихся людей запасы гликогена в организме будут выше, чем у нетренированных.

Важно понимать, что продукты питания сами по себе не повышают запасы гликогена, а лишь способствуют его более быстрому восполнению. Именно поэтому для регулярно тренирующихся или занятых физическим трудом людей важно контролировать достаточное содержание углеводов в рационе.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Какие продукты рекомендовано есть?

В первые часы после тренировки употребление продуктов с высоким гликемическим индексом (ГИ), например, сладостей, выпечки, риса или картофеля может ускорить восстановление гликогена в мышцах.

Также в двух исследованиях было доказано, что при недостатке углеводов в рационе прием дополнительных 0,3-0,4 г протеина на килограмм массы тела ускорял восполнение полисахаридов. В некоторых публикациях можно найти доказательства того, что прием креатина положительно влияет на синтез гликогена в мышцах в период отдыха после тренировок.

Еще один важный момент: учитывайте, что избыточное употребление углеводов не ускоряет процесс расширения гликогеновых депо у тренирующихся. Также длительное потребление большого количества углеводов не увеличивает содержание полисахаридов в скелетных мышцах у нетренированных людей. Питайтесь сбалансировано в соответствии с вашими тренировкам.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Источник

ГЛИКОГЕН

ГЛИКОГЕН (греч, glykys сладкий + gennao создавать, производить; син. животный крахмал) — главный резервный полисахарид высших животных и человека, построенный из остатков α-D-глюкозы, (C6H10O5)n. Открыт К. Бернаром в 1857 г. Содержится во всех органах и тканях животных и человека, в наибольшем количестве в печени (до 20%) и мышцах (до 4%), встречается также в некоторых растениях, высших грибах, микроорганизмах (напр., дрожжах). Врожденные наследственные заболевания, связанные с нарушением обмена углеводов, в значительной своей части представлены гликогенозами.

Величины мол. веса (массы) нативного Гликогена находятся в пределах 10 7 —10 9 и выше. Различные Гликогены гетеродисперсны, т. е. представляют собой смеси молекул разной массы. Величина мол. веса Гликогена зависит от вида животного, органа, физиологического состояния и от метода выделения Гликогена. Из тканей Гликоген можно выделить извлечением холодной 10% трихлоруксусной к-той с последующим осаждением спиртом (метод Остерна) или экстрагированием тканей горячим 60% р-ром едкого кали, гидролизующим белки и другие соединения, но в основном сохраняющим Г., который затем осаждают спиртом (метод Пфлюгера), однако при выделении Г. этими методами происходит значительная деполимеризация его молекул, и для получения более нативных препаратов пользуются экстрагированием холодной водой или фенолом, гомогенизацией тканей в глициновом буферном р-ре pH 10,4 с хлороформом с последующим дифференциальным центрифугированием.

У животных сохраняется постоянная картина распределения Г. по мол. весам, носящая, по-видимому, индивидуальный характер и мало изменяющаяся как при убыли Г. (напр., при голодании или введении адреналина), так и при стимуляции биосинтеза Г. (напр., при введении глюкозы). Очевидно, это достигается устойчивой регуляцией метаболизма Г. При патологических условиях мол. веса Г. могут сильно изменяться.

Г. представляет собой аморфный белый порошок, растворяющийся в воде с образованием опалесцирующих или молочно-белых р-ров. Растворимость Г. равна 15—21% при 20°. Из р-ров Г. осаждается спиртом, танином и сульфатом аммония при полном насыщении. С р-ром йода Г. в зависимости от происхождения препарата дает окрашивание от красного до желто-бурого, к-рое исчезает при кипячении и вновь появляется при охлаждении. Г. обладает оптической активностью, [a]D + 196°. Т. к. в огромной молекуле Г. существует лишь один полуацетальный гидроксил, Г. обладает ничтожной восстанавливающей (редуцирующей) способностью. Каждый глюкозный остаток содержит в среднем 3 спиртовых гидроксила (от 2 до 4), поэтому при действии метилирующих реагентов на Г. можно получить триметилгликоген.

Кипячение Г. с разбавленными к-тами приводит к его неполному гидролизу и образованию декстринов (см.). Продуктом полного гидролиза Г. является глюкоза (см.):

Полный гидролиз Г. с количественным определением образовавшейся глюкозы является одним из способов количественного определения Г.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Молекулы Г. построены из дихотомически ветвящихся полиглюкозидных цепей, в которых глюкозные остатки соединены альфа-1,4-глюкозидными связями; в точках ветвления имеются альфа-1,6-глюкозидные связи (7— 9%) (рис. 1,а).

В молекуле Г. различают внутренние цепи (ветви) — участки полиглюкозидных цепей между точками ветвления и наружные цепи (ветви)— участки от периферической точки ветвления до нередуцирующего конца цепи (рис. 1,6). Длина наружных и внутренних цепей в молекулах Г. значительно варьирует в зависимости от вида животного и органа, из к-рого выделен Г. Эта схема строения молекулы Г. была предложена Майером (К. Н. Meyer) и Бернфельдом (Р. Bernfeld) и получила всеобщее признание, т. к. подтверждалась не только хим., но и энзиматическими исследованиями.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

Высокие мол. веса Г. и результаты гидролитического расщепления различных Г. дали возможность Уилану (W. Whelan) и его сотрудникам в 1970 г. предложить новый вариант схемы строения молекулы Г. (рис. 2). Общее число A-цепей как в схеме Майера, так и в схеме Уилана также приблизительно равно числу B-цепей. На схеме видны «спрятанные» цепи В, к к-рым могут быть присоединены «спрятанные» цепи А. В этой модели половина цепей В несет вдвое большее число цепей А; вторая половина цепей В не несет цепей А, но несет цепи В. Схема Уилана не выражает точно подлинную структуру Г., но объясняет некоторые новые данные, полученные в химии гликогенов.

гликоген что это такое. Смотреть фото гликоген что это такое. Смотреть картинку гликоген что это такое. Картинка про гликоген что это такое. Фото гликоген что это такое

В 1942 г. А. А. Лазарев путем дифференциального центрифугирования выделил из печени высокомолекулярный Г., названный частичковым. В 60-х годах 20 в. были получены электронно-микроскопические снимки частичковых Г. (рис. 3). Самые крупные частицы, имеющие вид тутовых ягод (диам. 50—200 нм, мол. вес 10 7 —10 9 ), были названы альфа-частицами, самые мелкие, являющиеся их субчастицами (диам. 20—40 нм, мол. вес 2—5×10 6 ), — гамма-частицами, а промежуточные по величине, состоящие из небольшого числа гамма-частиц,— бета-частицами.

С 40-х годов 20 в. считалось, что Исходным соединением в биосинтезе Г. является глюкозо-1-фосфат, глюкозный остаток к-рого переносится на акцептор — гликоген-затравку под действием специфической фосфорилазы:

Образующиеся линейные полиглюкозидные цепи превращаются в ветвистые при помощи альфа-глюканветвящей глюкозилтрансферазы (КФ 2.4.1.18).

Проведенное впервые сов. исследователями изучение строения синтетических Г., полученных in vitro при помощи ферментов из мышц, показало их близость природным Г. (Б. Н. Степаненко и сотр.). Затем было установлено, что in vivo главным путем биосинтеза Г. является синтез его из нуклеозиддифосфатсахаров, из которых наиболее активна в этом отношении уридиндифосфатглюкоза (УДФГ). Глюкозный остаток УДФГ под действием фермента УДФГ-гликоген — глюкозилтрансферазы (КФ 2.4.1.11) переносится на полисахарид — акцептор:

Далее ветвящий фермент превращает линейные цепи полисахарида в ветвистые. Синтез Г. из УДФГ большинство исследователей считает главным. С термодинамической точки зрения УДФГ является гораздо более выгодным донатором глюкозных остатков, чем глюкозо-1-фосфат, т. к. обладает значительно большим запасом энергии, однако имеются данные, что синтез из глюкозо-1-фосфата при определенных условиях может происходить и in vivo.

В 1975 г. Крисман и Баренго (С. R. Krisman, R. Barengo) установили, что в отсутствие гликогена-затравки синтез Г. осуществляется на молекуле белка-матрицы («primer») при участии фермента — инициатора синтеза Г., катализирующего перенос на белок-матрицу глюкозных остатков с УДФГ с образованием олигосахаридной цепочки. Далее в процесс вступает фермент гликогенсинтетаза, действующий обычным образом.

Расщепление Г.— гликогенолиз может осуществляться фосфорилитическим путем (при действии фосфорилазы) и гидролитическим — амилолитическим путем. Амилолиз Г. осуществляется при участии трех амилаз (см.). альфа-Амилаза (КФ 3.2.1.1) катализирует гидролиз молекулы Г. на крупные блоки, которые служат затравкой при синтезе новых молекул Г.; бета-амилаза (КФ 3.2.1.2) гидролизует альфа-1,4-связи, последовательно отщепляя фрагменты от нередуцирующих концов цепей Г.

В тканях человека и животных советскими биохимиками Е. Л. Розенфельд и И. А. Поповой обнаружена гамма-амилаза, катализирующая отщепление остатков глюкозы от молекулы Г. по альфа-1,4-связи. Глюкоза, освобожденная т. о., поступает в кровоток и используется для энергетических нужд организма. Главным ферментом, расщепляющим Г. in vivo, является гликогенфосфорилаза (КФ 2.4.1.1).

Однако полностью молекула Г. может расщепиться лишь при участии нескольких ферментов. Фосфорилаза (см.) отщепляет глюкозные остатки, начиная от периферического конца наружных ветвей молекулы Г, При приближении к альфа-1,6-связям ее действие прекращается. Глюкозный остаток, соединенный с остальной частью молекулы альфа-1,6-связью, остается обнаженным. На такой остаток действует амило-1,6-глюкозидаза (декстрин-1,6-глюкозидаза; КФ 3.2.1.33); после его удаления продолжет свое действие гликогенфосфорилаза.

Продукт фосфоролиза Г. — глюкозо-1-фосфат изомеризуется под действием фосфоглюкомутазы (КФ 2.7.5.1), превращаясь в глюкозо-6-фосфат. Последний далее может участвовать в различных видах обмена (гликолиз или пентозофосфатный путь); в печени значительная его часть гидролизуется глюкозо-6-фосфатазой с образованием свободной глюкозы, к-рая поступает в кровь,— это и есть один из главных метаболических источников глюкозы в крови.

Регуляция метаболизма Г. осуществляется нейрогуморальным путем, её молекулярные механизмы в значительной степени выяснены. Одним из основных принципов этих механизмов является существование двух форм важнейших ферментов метаболизма Г.— гликогенфосфорилазы (фосфорилазы а) и гликогенсинтетазы (УДФГ-гликоген — глюкозилтрансферазы); одна из этих форм обладает мало изменяющейся активностью, тогда как активность другой способна сильно изменяться под влиянием активаторов.

Давно известен феномен быстрого расщепления Г. при действии адреналина (см.). Синтез Г. адреналином угнетается. Инсулин (см.) — антагонист адреналина, оказывает на биосинтез Г. противоположное действие. Другие гормоны — глюкагон (см.), половые гормоны (см.) и т. д. также влияют на метаболизм Г.

При нарушениях обмена Г., приводящих к его аномальному накоплению в клетках и увеличению концентрации F. в крови, развивается так наз. гликогенная (гликогеновая) болезнь, или гликогенозы (см.). В зависимости от локализации аномального накопления Г. различают печеночную, мышечную и генерализованную форму гликогенозов. Классификация гликогенозов основана на полном отсутствии или дефиците того или иного фермента, участвующего в обмене Г. Известно более 10 типов гликогенозов. При гепатитах различной этиологии количество Г. в крови уменьшается.

Методы определения гликогена

В крови человека содержание Г. определяют по методу Преображенской, который основан на кислотном гидролизе Г., осажденного из крови щелочью и этанолом, и количественном определении образовавшейся глюкозы.

Количество Г. в крови здорового человека, по Преображенской, равно 2,72 мг% (от 1,69 до 3,87 мг%).

Г. в крови человека определяют также методом Пфлайдерера. В этом случае образовавшуюся после кислотного гидролиза Г. глюкозу фосфорилируют за счет АТФ при участии гексокиназы (см.), в результате чего образуются эквимолярные количества АДФ; АДФ перефосфорилируется с фосфоенолпируватом при участии пируваткиназы, образовавшийся пируват восстанавливают при участии НАД-H и лактатдегидрогеназы до молочной к-ты. Количество глюкозы находят по изменению количества НАД-H, определяемому спектрофотометрически при 340 или 366 нм.

Гистохимические методы определения гликогена в тканях

Для выявления гистохим, методами Г. в тканях пользуются его свойством не растворяться в спиртах. Очень часто для фиксации употребляют абсолютный спирт или жидкость Карнуа. По Нейкирху (P. Neukirch), материал фиксируют в жидкостях, насыщенных декстрозой; по Жандре (F. L. de Gendre), применяют смесь спирта, пикриновой, уксусной к-т и формалина. Методика Гелей (J. Gelei) предусматривает применение смеси осмиевой к-ты с абсолютным спиртом.

Гистохимически гликоген определяют с помощью метода Беста, метода Шабадаша и PAS-реакции (см. Беста метод, Шабадаша способы, ШИК-реакция).

В живой клетке Г. частично распределен в цитоплазме диффузно, частично связан с гранулами (напр., в эозинофильных лейкоцитах). При действии соответствующих фиксирующих жидкостей Г. осаждается в форме зерен и глыбок. После смерти или в органах, извлеченных из организма, Г. быстро начинает исчезать и тем быстрее, чем выше окружающая температура. Под действием воды растворение Г. сильно ускоряется. Сильное растворяющее действие оказывает также 15% р-р едкого кали или солянокислый пепсин. Материал для приготовления препаратов, предназначенных для исследования на Г., должен фиксироваться в свежем состоянии. Следует избегать соприкосновения его с водой, физиол, р-ром как до, так и после фиксации. Общим для действия всех фиксаторов Г. является то, что в наружных зонах препарата, особенно в клетках, богатых протоплазмой, происходит характерное смещение зернистого или глыбчатого осадка Г., так наз. бегство гликогена от спирта.

В неокрашенном состоянии клеточный Г. отличается сильным блеском и бесструктурностью; он обычно имеет вид зерен, расположенных в большем или меньшем количестве в протоплазме, а при патол, условиях нередко и в ядрах клеток.

При болезнях, сопровождающихся нарушениями углеводного обмена, наблюдаются повышенные отложения гранул Г. в мышцах, печени, почках. Характерно накопление Г. в эпителии петель Генле при сахарном диабете (см. Диабет сахарный), связанное с нарушением реабсорбции глюкозы в условиях гипергликемии. Различают: «стабильный» Г., который прочно входит в состав клеточной протоплазмы, не подвергается значительным количественным колебаниям, часто лишь с трудом обнаруживается (или совсем не обнаруживается) микрохим. реакциями, и «лабильный», или «расходный», Г., временно откладывающийся в клетке, легко от нее отщепляющийся по мере потребности организма в энергетическом материале, подверженный резким количественным колебаниям и отчетливо определяемый микрохимически. Стабильный Г. при физиол. условиях имеется у человека во всех органах, кроме нервной системы, грудной железы и костей. Характерно его постоянное присутствие в тех тканевых элементах, которые находятся в нек-ром отдалении от кровяного тока, именно в хрящевых клетках и в различных видах многослойного эпителия. Богаты Г. ткани эмбриона, у к-рого при нормальных условиях Г. встречается всюду, кроме нервной системы. Повышенное содержание его у эмбриона связывается большинством исследователей с особенно оживленным обменом веществ в растущих клетках.

Иногда присутствие Г. зависит от функционального состояния органа. Так, в эпителии слизистой оболочки матки тотчас после менструального периода обнаруживается наименьшее содержание Г. или даже полное его отсутствие. Главным депо лабильного Г. служат печень и скелетная мускулатура; при этом в печени исчезновение Г. у голодающего животного начинается с периферии дольки и постепенно распространяется по направлению к центру. Накопление при возобновившемся кормлении идет в обратном порядке, т. е. от клеток, расположенных около центральных вен, к периферии. Иногда Г. можно встретить и вне клеток (в межуточном веществе, лимф, пространствах и т. д.). Чаще всего это результат посмертного вымывания его из клеточной протоплазмы, реже — последствие прижизненного повреждения или гибели клеток.

Приведенные сведения о локализации и динамике накопления Г. в тканях, полученные гл. обр. с помощью гистохимии, значительно расширились в связи с развитием методов электронной микроскопии (см.) и электронной гистохимии (см.). При помощи электронной микроскопии было установлено, что Г. характеризуется тремя уровнями организации, каждому из которых свойственны специфические размеры и морфол, особенности (альфа-, бета- и гамма-частицы).

Гранулы Г. локализуются в трубочках и пузырьках эндоплазматической сети, гранулярные отложения Г. обнаруживаются также в матриксе митохондрий.

Малер Г. Р. и Кордес Ю.Г. Основы биологической химии, пер. с англ., М., 1970; Степаненко Б. Н. Углеводы, Успехи в изучении строения и метаболизма, серия «Итоги науки», М., 1968; Степаненко Б. Н. и Боброва Л. Н. Современные представления о микро- и макромолекулярной структуре гликогена, Усп. биол, хим.,т. 15, с. 195, 1974, библиогр.; Cori G. Т. Glycogen structure and enzyme deficiencies in glycogen-storage disease, Harvey Lect., ser. 48,p. 145, 1954, bibliogr.; Krisman C. R. a. Barengo R. Aprecursor of glycogen, biosynthesis, Europ. j. Biochem., v. 52, p. 117, 1975, bibliogr.; Rуman B. E. a. Whelan W. J. New aspects of glycogen metabolism, Advanc. Enzymol., v. 34, p. 285, 1971, bibliogr.; Whelan W. J. On the oridinof primer for glycogen synthesis, Trends Biochem. Sci., v. 1, p. 113, 1976, bibliogr.

Б. H. Степаненко; H. К. Пермяков (гист.).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *