графен что это за материал и для чего
Графен с неба, в воде и в вакцинах. Зачем?
2015-2017 годы. ПАУКИ И ГРАФЕН
Группа итальянских исследователей обнаружила, что при нанесении на некоторых пауков водной взвеси графена и углеродных нанотрубок (УНТ) некоторые животные способны включать их в состав своей паутины, что делает ее более прочной.
Можно также и поить их взвесью графена в воде.
Как оказалось, графен не нарушает жизнедеятельность некоторых из насекомых.
То есть не убивает, по крайней мере сразу.
Так, по ударной вязкости, доходящей до 520 Мдж/м2, их паутина десятикратно превосходит кевлар (защита от ножа и пули), что позволяет паукам Дарвина плести нити до 25 метров длиной и даже перекидывать «мосты» из такой паутины через небольшие реки.
Графен может стать частью живого организма, встроиться в него и изменить его свойства.
2016 год. ГРАФЕН И ШЕЛКОПРЯД
Учёные с химического факультета и центра нано- и микромеханики Университета Цинхуа (Пекин) предложили новый способ обогащения шёлкового волокна с помощью углеродных нанотрубок и графена.
Китайские учёные предположили, что для пищеварительной системы шелкопрядов и внедрения в структуру фиброина гораздо более приемлемыми окажутся одностенчатые углеродные нанотрубки диаметром около 1-2 нм.
Кроме одностенчатых нанотрубок, учёные решили скормить шелкопрядам ещё и графен, тоже потенциальный упрочнитель.
Чтобы скормить материалы животным, учёные применили простой метод: они распылили взвесь с одностенчатыми нанотрубками и графеном на листья шелковицы, которыми питаются шелкопряды — а потом собрали продукт из кокона.
Опыт завершился успехом.
Диета шелкопрядов с добавками одностенчатых нанотрубок и графена привела к получению шёлковой нити с улучшенными свойствами.
Нить получена естественным натуральным путём из кокона, как и обычная шёлковая нить.
Учёные изучили спектры комбинационного рассеяния шёлкового волокна и экскрементов шелкопрядов — и подтвердили в обоих случаях внедрение углеродных нанотрубок в шёлковое волокно.
Они также проверили, насколько изменились свойства волокна после внедрения углеродных нанотрубок.
Неудивительно, что после добавления графена и углеродных нанотрубок шёлковая нить стала проводником электричества.
У лучшего образца шёлка с частицами графена электрическая проводимость составила довольно высокие 120 сименс на сантиметр.
Такой шёлк можно использовать в электронике.
Удобно запитывать носимые гаджеты, вшитые прямо в шёлковую одежду.
Собственно, и светящуюся ткань сделать достаточно просто.
Научная статья опубликована 13 сентября 2016 года в журнале Nano Letters (doi: 10.1021/acs.nanolett.6b03597).
Графен может стать частью живого организма, встроиться в него и изменить его свойства.
2020 год. ЛЮДИ И ГРАФЕН
Смотрим сайт «GRAFENE FLAGSHIP».
Он рассказывает о проекте Евросоюза с бюджетом в 1 млрд. евро.
Речь идет о производстве и использовании графена.
Биолог по имени Рикардо Дельгадо и врач Хосе Луис Севильяно, ведущие онлайн-программы под названием «La Quinta Columna», выдвинули версию, по которой руки некоторых людей становятся магнитными именно в том месте, где им сделали прививку.
В этих местах прилипают не только магниты, но и ножницы, металлические детали, инструменты, даже мобильные телефоны!
Это явление не является исключительным для руки.
В течение нескольких дней оно перемещается в сторону груди, шеи или верхней части позвоночника.
Причина?
La Quinta Columna, команда испанских исследователей, обнаружила, что некоторые вакцины содержат оксид графена.
Рикардо Дельгадо:
«Они вводят оксид графена в качестве адъюванта в вакцины против COVID-19.
Он имеет полосу поглощения для частот 5G, что также может служить причиной магнитного явления.
Нановещества внедряются в ампулы с вакциной.
Не только от COVID-19, но и от вакцины против гриппа.
Существует множество свидетельств «магнитного» явления во всем мире.
Они связаны не только с явлением прилипания магнитов и металлических предметов к месту уколов.
Есть еще явления электромагнитной индукции, генерирующей переменные электромагнитные поля внутри тела если использовать измерительные приборы, такие как гауссметр или мультиметр, которые тоже генерируют переменные электрические поля в милливольтном масштабе, но очень необычные, порядка 180 мВ до 200-350 мВ у некоторых людей, особенно в области лба.
Графен может стать частью организма людей и изменить его свойства, например, сделать более электропроводным и способным принимать сотовое излучение, поскольку при попадании внутрь нас он встраивается в нас на некоторое время (например, полгода) и превращается в антенну.
ЗАЧЕМ?
ПОЧЕМУ ИМЕННО ОКСИД ГРАФЕНА?
Вот версия.
Исследователи из компании Graphene Flagship, партнеры SISSA в Италии, ICN2 в Испании и Манчестерского университета в Великобритании, в сотрудничестве с Медицинской школой Рибейран-Прету Университета Сан-Паулу, в модельном исследовании обнаружили, что оксид графена подавляет поведение, связанное с тревогой.
Они обнаружили, что введение оксида графена в определенную область мозга заставляет замолчать нейроны, ответственные за тревожное поведение.
Ученые использовали обычную модель поведения животных, которую описывают следующим образом.
В известном классическом мультфильме «Том и Джерри», Джерри живет в дыре в стене небольшой комнаты, где чувствует себя защищенным и в безопасности.
Обычно мышь исследует комнату свободно и без забот.
Но когда мышь нюхает кошку, она убегает обратно в нору, поскольку знает, что только там безопасно.
Это очень сильное защитное поведение и основа для реакции «бей или беги», которая свойственна большинству животных.
Мышь надолго запоминает такое свое поведение и при малейшем шорохе убегает обратно в нору даже по прошествии недель встречи с кошкой, даже после того, как малейших запах кошки исчез.
Однако, применив точечное введение оксида графена исследователи получили удивительные результаты. «Через два дня после инъекции оксида графена в определенную область мозга мыши она вела себя как другие мыши, которые никогда не ощущали запах кошки в своей домашней среде.
Другими словами, оксид графена подавлял тревожное поведение мышей», – объясняет Лаура Баллерини, ведущий автор статьи и профессор физиологии из компании Graphene Flagship
«Оксид графена взаимодействует с частью мозга, ответственной за формирование воспоминаний, связанных со страхом, которые вызывают беспокойство. Он не действует как лекарство, подавляя функцию каких-то выборочных рецепторов рецепторов, как действуют все другие лекарства.
Вместо этого графен временно останавливает весь механизм формирования воспоминаний на достаточно долгое время, чтобы разрушить связанную со страхом патологию мозга, не повреждая клеток», – продолжает Баллерини.
Таким образом, экспериментально показано, что графен имеет тропизм к нервной ткани и хорошо там накапливается.
А после того как его концентрация в нейросети становится достаточной – он начинает блокировать механизм формирования памяти, переписывая её настолько, что мышь потом никак не реагирует на кота.
БЛАГИЕ НАМЕРЕНИЯ ВЛАСТЕЙ
Путей введения в нас графена немало.
Это и распыление с самолетов, и добавление в воду.
И вакцины (главный способ введения), и многое, многое другое.
Чему нужно учиться теперь?
Нужно учиться лечиться, чтобы выжить самому и помочь близким.
Все это работает, причем здорово!
Особенно с молитвой Тому, Кто создал лечебные растения и минералы!
(читайте мои статьи, там все есть).
Что такое графен и как он изменит нашу жизнь?
Впервые о графене заговорили в 2004 году, когда Андрей Гейм и Константин Новоселов — британские ученые российского происхождения — опубликовали статью в журнале Science [1]. В ней говорилось о новом материале, который получили с помощью обычного карандаша и скотча. Ученые просто снимали клейкой лентой слой за слоем, пока не дошли до самого тонкого — в один атом. В 2010-м за это их наградили Нобелевской премией. С тех прошло уже десять лет.
Что такое графен и чем он так уникален?
Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.
Отсюда — его первое уникальное свойство: самый тонкий.
Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.
Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.
Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.
Миф о токсичности графена
Однако сейчас в биоэлектронике используют другой способ получения графена — путем химического осаждения из газовой фазы. Частицы получаются достаточно крупными. Потом их закрепляют на подложке, и проникнуть сквозь клеточную мембрану они уже не могут.
Где уже используют графен?
Сейчас графен успешно применяют в электронике. Самый массовый продукт — это пауэрбанк [3]: производители обещают, что сам он заряжается за 20 минут, а топовый смартфон заряжает наполовину за полчаса.
Существуют также графеновые куртки и платья. Последние, в частности, оснащены светодиодами [4], которые реагируют на дыхание и температуру тела, меняя цвет.
Теннисные ракетки с графеном весят до 300 грамм меньше, чем обычные, при той же силе удара.
Наконец, машинное масло с графеном призвано снизить износ двигателя.
Где можно применять графен в будущем?
Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак [5]. Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.
Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.
Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.
Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.
Графеновый бум
За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.
В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах [6].
Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.
В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.
В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд [7]. В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.
В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.
Среди них — Samsung [8]: компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.
В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.
Почему же графен до сих пор не изменил нашу жизнь?
Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.
Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.
Его обнаруживают на масках и других предметах быта в виде черных «червяков» (см. ролики).
Его часто можно встретить на коже человека, пришедшего с улицы.
Особенно, если до этого в небе висели химтрейлы.
Сразу замечу, что я лично это проверил, купив в интернет-магазине небольшой цифровой микроскоп, который подключается к компьютеру, всего-то за 1000 руб. (кратность увеличения 1600).
Смотрим сайт «GRAFENE FLAGSHIP».
Он рассказывает о проекте Евросоюза с бюджетом в 1 млрд. евро.
Речь идет о производстве и использовании графена.
Технологии сравнительно недорогого массового производства графена стремительно развиваются.
Увы, графен, и в особенности его оксид, токсичен.
Целый ряд работ показал, что кератиноциты (90 процентов клеток эпидермиса кожи человека), клетки крови человека и свободно живущие микроорганизмы уязвимы к оксиду графена.
Так ученые из Казанского федерального университета, встревоженные ситуацией, предложили способ снизить опасность оксида графена, который можно получить вместе с водой из водоемов повсеместно.
Соответствующая статья опубликована в Environmental Science & Technology Letters.
Вот проблема: частицы оксида нанографена слишком маленькие для большинства фильтров.
Авторы новой работы взяли каолин (главный компонент белой глины, довольно недорогой материал) и оксид графена и добавили их равными долями в воду, куда предварительно поместили одноклеточных инфузорий-туфелек.
Вторую группу инфузорий поместили в воду, куда добавили только оксид графена. Оказалось, что при равных дозах этого материала выживаемость инфузорий в разных растворах резко различалась.
При достижении концентрации в один миллиграмм оксида графена на миллилитр воды около половины инфузорий гибло.
Если такое же количество оксида графена приходилось на тот же объем воды, куда добавили каолин (по массе равный оксиду графена), то выживало примерно 95 процентов одноклеточных.
ПОЧЕМУ ИМЕННО ОКСИД ГРАФЕНА?
Вот версия.
Исследователи из компании Graphene Flagship, партнеры SISSA в Италии, ICN2 в Испании и Манчестерского университета в Великобритании, в сотрудничестве с Медицинской школой Рибейран-Прету Университета Сан-Паулу, в модельном исследовании обнаружили, что оксид графена подавляет поведение, связанное с тревогой.
Они обнаружили, что введение оксида графена в определенную область мозга заставляет замолчать нейроны, ответственные за тревожное поведение.
Ученые использовали обычную модель поведения животных, которую описывают следующим образом.
В известном классическом мультфильме «Том и Джерри», Джерри живет в дыре в стене небольшой комнаты, где чувствует себя защищенным и в безопасности.
Обычно мышь исследует комнату свободно и без забот.
Но когда мышь нюхает кошку, она убегает обратно в нору, поскольку знает, что только там безопасно.
Это очень сильное защитное поведение и основа для реакции «бей или беги», которая свойственна большинству животных.
Мышь надолго запоминает такое свое поведение и при малейшем шорохе убегает обратно в нору даже по прошествии недель встречи с кошкой, даже после того, как малейших запах кошки исчез.
Однако, применив точечное введение оксида графена исследователи получили удивительные результаты. «Через два дня после инъекции оксида графена в определенную область мозга мыши она вела себя как другие мыши, которые никогда не ощущали запах кошки в своей домашней среде.
Другими словами, оксид графена подавлял тревожное поведение мышей», – объясняет Лаура Баллерини, ведущий автор статьи и профессор физиологии из компании Graphene Flagship
«Оксид графена взаимодействует с частью мозга, ответственной за формирование воспоминаний, связанных со страхом, которые вызывают беспокойство. Он не действует как лекарство, подавляя функцию каких-то выборочных рецепторов рецепторов, как действуют все другие лекарства.
Вместо этого графен временно останавливает весь механизм формирования воспоминаний на достаточно долгое время, чтобы разрушить связанную со страхом патологию мозга, не повреждая клеток», – продолжает Баллерини.
Таким образом, экспериментально показано, что графен имеет тропизм к нервной ткани и хорошо там накапливается.
А после того как его концентрация в нейросети становится достаточной – он начинает блокировать механизм формирования памяти, переписывая её настолько, что мышь потом никак не реагирует на кота.
БЛАГИЕ НАМЕРЕНИЯ ВЛАСТЕЙ
Кстати, не продавливается ли властями и тотальная вакцинация для введения в нас этого «полезного» нановещества?
Биолог по имени Рикардо Дельгадо и врач Хосе Луис Севильяно, ведущие онлайн-программы под названием «La Quinta Columna», нашли причину, по которой руки некоторых людей становятся магнитными именно в том месте, где им сделали прививку.
В этих местах прилипают не только магниты, но и ножницы, металлические детали, инструменты, даже мобильные телефоны!
Это явление не является исключительным для руки.
В течение нескольких дней оно перемещается в сторону груди, шеи или верхней части позвоночника.
Причина?
La Quinta Columna, команда испанских исследователей, обнаружила, что вакцины содержат оксид графена.
Рикардо Дельгадо:
«Они вводят оксид графена в качестве адъюванта в вакцины против COVID-;19.
Он имеет полосу поглощения для частот 5G, что также может служить причиной магнитного явления.
Нанотехнологии внедряются в ампулы с вакциной.
Не только от COVID-;19, но и от вакцины против гриппа.
И на самом деле, они сделали это именно с помощью противогриппозной вакцины, которая, по нашему мнению, вызвала саму болезнь COVID-;19.
Существует множество свидетельств «магнитного» явления во всем мире.
Они связаны не только с явлением прилипания магнитов и металлических предметов к месту уколов.
Есть еще явления электромагнитной индукции, генерирующей переменные электромагнитные поля внутри тела если использовать измерительные приборы, такие как гауссметр или мультиметр, которые тоже генерируют переменные электрические поля в милливольтном масштабе, но очень необычные, порядка 180 мВ до 200-350 мВ у некоторых людей, особенно в области лба.
Наночастицы восстановленного оксида графена (rGO) внутри тела, которые приобретают магнитные свойства именно внутри тела в условиях температуры тела, при контакте с водородом и под определенными углами, которые называются «магический угол» оксида графена.».
Ну, нет другого способа теперь выжить, как с Божьей помощью осваивать регулярную детоксикацию организма с помощью прекрасных, безопасных, эффективных лечебных трав и минералов, таких, например, как девясил, неочищенный овес, эрва шерстистая (пол-пала).
Я об этом писал много раз.
Есть и другие дары Божьи.
Вот, например, настойка из измельченного чеснока и старого, доброго, красного вина.
Оа спасала людей даже от чумы, проверьте, это исторический факт!
Сделайте ее и пейте, разбавленную в 2-3 раза, перед каждой едой.
А русская баня? Что может быть лучше?!
Читайте мои статьи о сверхмощном, недорогом и безопасном очищении и лечении органов дыхания (туман соли с фитонцидами).
Графен: мифы и реальность
Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.
Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.
Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?
Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.
Кристаллическая структура кремния
Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.
Солнечная батарея на основе поликристаллического кремния
С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.
Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?
Владимир Федоров: Графен – это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.
Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру
А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.
Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов
Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.
Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные – 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.
Алла Аршинова: Прочнее алмаза?
Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.
Графит в первозданном виде
Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?
Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.
Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?
Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?
Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.
И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.
Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?
Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.
Графен— одна из аллотропных модификаций углерода
По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой
Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.
Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.