графеновый аэрогель что это
Самым легким материалом в мире стал графеновый аэрогель
Созданный в прошлом году материал под названием аэрографит не смог удержать титул самого легкого материала в мире. Корону пришлось отдать новому аэрогелю, изготовленному из графена, чудо-материала 21 века. Плотность ультралегкого материала ниже плотности гелия и вдвое меньше водорода.
Новый материал разработала группа исследователей под руководством профессора Гао Чао из лаборатории департамента технологий и наук полимеров Чжэцзянского университета (Китай).
Аэрогелям, изначально созданным в 1931 году американским ученым и инженером-химиком Сэмюелем Стивенсом Кистлером, в последнее время начало уделяться очень много внимания. В 2011 году аэрогель на основе многослойных углеродных нанотрубок (MCNT), известный также под названием «замороженный дым», с плотностью 4 мг/см3 уступил место самому легкому материалу в мире с микро-решетчатой структурой, плотность которого равна 0,9 мг/см3. Позже его сместил аэрографит (0,18 мг/см3), чей триумф оказался таким же недолгим. Сегодня пальма первенства принадлежит графеновому аэрогелю. Его плотность — 0,16 мг/см3.
Исследователи уже имеют опыт создания макроскопических графеновых материалов, в частности одномерных волокон и двухмерных пленок, полученных из графена. Чтобы поставить рекорд, им достаточно было добавить одно измерение и получить трехмерный пористый материал.
Вместо золь-гелевой технологии и других методов, используемых для создания аэрогелей, Гао применил новый способ высушивания, который помог создать углеродную губку настраиваемой формы.
«Необходимость использования шаблонов отсутствует, поскольку размер материала напрямую зависит от размера контейнера. Чем больше контейнер, тем больше аэрогеля. Мы можем говорить о тысячах кубических сантиметров, и это еще не предел».
По словам ученых, «выведенный» ими материал отличается чрезвычайно высокой прочностью и упругостью. Он способен быстро возвращать форму после сжатия, впитывать и удерживать большой объем не растворяющихся в воде веществ — до 900 раз больше собственного веса. В это сложно поверить, но за одну секунду грамм аэрогеля впитывает до 68,8 грамма органических веществ, что делает его привлекательным для использования в местах разлива нефти.
«Возможно, однажды он поможет предотвратить экологическую катастрофу. Благодаря эластичным свойствам материала собранная нефть и аэрогель могут быть вторично переработаны»,
Исследователи изучают возможности применения нового материала. По их словам, графеновый аэрогель можно использовать в качестве изоляционного материала, подложки катализатора или высокоэффективного композита.
Работа была опубликована в журнале Nature.
При создании гибких солнечных панелей для оклеивания зданий и окон автомобилей ученые Стэнфордского университета также использовали графен.
Графеновый аэрогель — сверхлёгкий материал
Если вы следите за новинками в мире современных технологий, то данный материал не будет для вас большой новостью. Тем не менее, рассмотреть более детально самый легкий материал в мире и узнать еще немного подробностей полезно.
Менее года назад звание самого легкого в мире материала получил материал под названием аэрографит. Но этому материалу не получилось долго удерживать пальму первенства, ее не так давно перехватил другой углеродный материал под названием графеновый аэрогель. Созданный исследовательской группой лаборатории Отдела науки о полимерах и технологиях университета Чжэцзяна (Zhejiang University), которую возглавляет профессор Гэо Чэо (Gao Chao), сверхлегкий графеновый аэрогель имеет плотность немного ниже плотности газообразного гелия и чуть выше плотности газообразного водорода.
Аэрогели, как класс материалов, были разработаны и получены в 1931 году инженером и ученым-химиком Сэмюэлем Стивенсом Кистлером (Samuel Stephens Kistler). С того момент ученые из различных организаций вели исследования и разработку подобных материалов, невзирая на их сомнительную ценность для практического использования. Аэрогель, состоящий из многослойных углеродных нанотрубок, получивший название «замороженный дым» и имевший плотность 4 мГ/см3, потерял звание самого легкого материала в 2011 году, которое перешло к материалу из металлической микрорешетки, имеющему плотность 0.9 мГ/см3. А еще год спустя звание самого легкого материала перешло к углеродному материалу под названием аэрографит, плотность которого составляет 0.18 мг/см3.
Новый обладатель звания самого легкого материала, графеновый аэрогель, созданный командой профессора Чэо, имеет плотность 0.16 мГ/см3. Для того, чтобы создать столь легкий материал, ученые использовали один из самых удивительных и тонких материалов на сегодняшний день — графен. Используя свой опыт в создании микроскопических материалов, таких, как «одномерные» графеновые волокна и двухмерные графеновые ленты, команда решила добавить к двум измерениями графена еще одно измерение и создать объемный пористый графеновый материал.
Вместо метода изготовления по шаблону, в котором используется материал-растворитель и с помощью которого обычно получают различные аэрогели, китайские ученые использовали метод сублимационной сушки. Сублимационная сушка коолоидного раствора, состоящего из жидкого наполнителя и частиц графена, позволила создать углеродистую пористую губку, форма которой почти полностью повторяла заданную форму.
«Отсутствие потребности использования шаблонов размеры и форма создаваемого нами углеродного сверхлегкого материала зависит только от формы и размеров контейнера» — рассказывает профессор Чэо, — «Количество изготавливаемого аэрогеля зависит только от величины контейнера, который может иметь объем, измеряемый тысячами кубических сантиметров».
Получившийся графеновый аэрогель является чрезвычайно прочным и упругим материалом. Он может поглотить органические материалы, в том числе и нефть, по весу превышающие в 900 раз его собственный вес с высокой скоростью поглощения. Один грамм аэрогеля поглощает 68.8 грамма нефти всего за одну секунду, что делает его привлекательным материалом для использования в качестве поглотителя разлитой в океане нефти и нефтепродуктов.
Помимо работы в качестве поглотителя нефти графеновый аэрогель имеет потенциал для использования в системах аккумулирования энергии, в качестве катализатора для некоторых химических реакциях и в качестве наполнителя для сложных композитных материалов.
3D печать графеновым аэрогелем
Эта статья является переводом «You can now 3D print one of the world’s lightest materials» с сайта qz.com, ну и немного от себя добавил.
Аэрогели — это одни из легчайших твердых материалов, созданных человеком. Графеновый аэрогель — рекордсмен в этой категории. Он настолько легок, что напечатанная на 3D принтере решетка из него не может даже сделать вмятину на комке шерсти. Аэрогель в 1000 раз легче воды. Минимальная плотность аэрогеля находит для него множество сфер применения. В том числе он может использоваться даже для сбора разливов нефти.
В настоящее время ученые из State University of New York (SUNY) и Kansas State University опубликовали в журнале Small статью о способе 3D печати графеновым аэрогелем. Эта технология упрощает формования изделий из этого материала и расширяет сферу его применения.
Графен — это слой атомов углерода толщиной в один атом. Впервые он был получен в 2004 году. И с тех пор был разрекламирован как удивительный материал за его прочность, пластичность и проводимость. Аэрогель по существу это обычный гель в котором вода заменена на воздух. Графеновый аэрогель известен своей высокой сжимаемостью (поэтому он может выдерживать высокое давление не разрушаясь) и высокой проводимостью. Сама структура материала, что придает ему эти качества, делает сложным его использование в 3D печати. Обычно для 3D печати аэрогелем основной материал смешивают с другими ингредиентами такими, как полимер. После придания структуры, полимер убирается химическим процессом (растворители и т.д.). Для получения изделий из графенового аэрогеля такой способ не подойдет т.к. разрушит структуру графена.
Ученые из SUNY Buffalo и Kansas State University нашли решение этой проблемы. Они смешали оксид графена с водой и наносили методом 3D печати эту смесь на подложку с температурой в — 25 C°. Таким образом, они замораживали каждый напечатанный слой используя лед, как поддержку.
Как только процесс печати закончился, лед удалили жидким азотом — сублимационная сушка. Таким образом, они исключили воду из конструкции не повреждая микроструктуру. В дальнейшем материал был нагрет для удаления атома кислорода. В результате в аэрогеле остался только графен. Плотность материала полученного таким способом составила от 0,5 кг/м3 до 10 кг/м3. Плотность наилегчайшего полученного аэрогеля составляет 0,16 кг/м3.
Сейчас исследователи из SUNY и Kansas State University работают над адаптацией своей технологии к печати другими аэрогелями.
Ну и напоследок расскажу об одной вкусной интересной сфере применения аэрогеля.
[irony] Новая супер high-tech система приготовления пищи [/irony]
Bose представила систему приготовления пищи (видео по ссылке) состоящую из индукционной варочной панели со считывателем радиочастотных меток и возможностью мониторинга и питания беспроводного датчика температуры, а также кастрюли (сковородки) с внутренней стенкой изготовленной из материала проводника электрического тока, являющегося нагревателем, наружной стенки из не проводящего электрический ток материала и наполнителя из аэрогеля между двумя стенками. В кастрюлю также встроена радиочастотная метка и беспроводной датчик температуры с индукционным питанием. Таким образом, получилась кастрюля которую можно не боясь обжечься держать голыми руками за дно во время кипения в ней воды. Выбор аэрогеля в качестве теплоизолятора обусловлен рядом требований таких как способность выдерживать высокие температуры, легкость, низкая теплопроводность (у аэрогелев теплопроводность находится где-то между вакуумными панелями и ППУ изоляцией, ближе к панелям). При установке кастрюли на варочную панель нагрев пищи/жидкости осуществляется за счет индукционного нагрева внутренней стенки кастрюли. Обратная связь реализована через датчик температуры, поэтому вместо задания определенной мощности подаваемой на нагревательный элемент используется выставление температуры внутренней поверхности кастрюли, что почти равно температуре пищи (низкая энергоемкость и высокая теплопроводность внутреннего слоя).
Аэрогель из графена и углеродных нанотрубок лишен недостатков своих предшественников
Рис. 1. A — кирпич массой 2,5 кг на аэрогеле массой 2 г. B — демонстрация теплоизолирующих свойств аэрогеля (цветок на куске аэрогеля, лежащем над пламенем горелки). C — аэрогель после тестового обстрела частицами на Земле в процессе подготовки миссии Stardust. Фотографии с сайта stardust.jpl.nasa.gov
Сочетание графена и углеродных нанотрубок позволило получить углеродный аэрогель, лишенный недостатков аэрогелей только из графена или только из нанотрубок. Новый композитный материал из углерода помимо обычных для всех аэрогелей свойств — чрезвычайно низкой плотности, твердости и низкой теплопроводности — обладает также высокой эластичностью (способностью восстанавливать форму после многократных сжатий и растяжений) и прекрасной способностью абсорбировать органические жидкости. Это последнее свойство может найти применение для ликвидации разливов нефти.
По определению, гель — это один из видов коллоидных систем, представляющий собой взвесь жидких частиц в твёрдом теле. Твердого компонента в геле намного меньше по объему, чем жидкого, но он представлен частицами нанометрового размера, контактирующими друг с другом и образующими разветвленную сеть из цепочек и листов, непрерывно пронизывающую весь объем геля. Именно за счет этого гель сопротивляется текучести и является студенистым или даже упругим, а не жидким. Если жидкую фазу полностью заместить газообразной (например, воздухом), мы получим аэрогель. Твердая фаза занимает в нем меньше 15% объема — как правило, около 1% или даже меньше.
Обычно для приготовления аэрогелей используют два родственных метода. Первый из них — сверхкритическая сушка. Если просто высушить гель, отступающая жидкость будет стягивать сетку наночастиц, поэтому сушку нужно проводить при условиях, в которых нет поверхностного натяжения, то есть когда жидкость находится в сверхкритическом состоянии.
Представим себе, что мы нагреваем замкнутый сосуд с жидкостью и парами этой жидкости. Чем выше температура, тем больше жидкости будет испаряться, переходя в газовую фазу, и тем выше будет давление, а вместе с ним и плотность газовой фазы (фактически — количество испарившихся молекул). При определённых давлении и температуре, величина которых будет зависеть от того, что за вещество в сосуде, плотность молекул в жидкости окажется такой же, как в газовой фазе. Такое состояние жидкости и называют сверхкритическим. В этом состоянии нет различия между жидкой и газовой фазой, а поэтому нет и поверхностного натяжения.
Еще более легкие (менее плотные) аэрогели получаются методом химического осаждения вещества, которое будет выполнять роль твердой фазы аэрогеля, на ранее приготовленную пористую подложку, которую затем растворяют. Этот метод позволяет регулировать плотность твердой фазы (путем регулирования количества осаждаемого вещества) и ее структуру (путем использования подложки с необходимой структурой).
Благодаря своей структуре аэрогели обладают набором уникальных свойств. Хотя их прочность приближается к прочности твердых тел (рис. 1A), по плотности они близки к газам. Так, лучшие образцы кварцевого аэрогеля имеют плотность около 2 мг/см 3 (плотность входящего в их состав воздуха — 1,2 мг/см 3 ), что в тысячу раз меньше, чем у непористых твердых материалов.
Аэрогели обладают и крайне малой теплопроводностью (рис. 1B), поскольку теплу нужно пройти сложный путь по разветвленной сети из очень тонких цепочек наночастиц. При этом перенос тепла по воздушной фазе также затруднен из-за того, что эти же цепочки делают невозможной конвекцию, без которой теплопроводность воздуха очень низка.
Ещё одно свойство аэрогеля — его необычайная пористость — позволило доставить на Землю образцы межпланетной пыли (см. Сборщик звездной пыли возвращается домой, «Элементы», 14.01.2006) с помощью космического аппарата Stardust. Его устройство сбора представляло собой блок аэрогеля, попадая в который, частицы пыли останавливались с ускорением несколько миллиардов g, не разрушаясь (рис. 1C).
Главным недостатком аэрогеля до недавнего времени была его хрупкость: он растрескивался при повторных нагрузках. Все полученные на тот момент аэрогели — из кварца, некоторых оксидов металлов и углерода — обладали этим недостатком. Но с появлением новых углеродных материалов — графена и углеродных нанотрубок — проблема получения эластичных и устойчивых к разрушению аэрогелей была решена.
Графен — это лист толщиной в один атом, в котором атомы углерода образуют гексагональную решетку (каждая клетка решётки — шестиугольник), а углеродная нанотрубка — это такой же лист, свернутый в цилиндр толщиной от одного до десятков нанометров. Эти формы углерода обладают большой механической прочностью, эластичностью, очень высокой площадью внутренней поверхности, а так же высокой тепло- и электропроводностью.
Однако материалы, приготовленные отдельно из графена или отдельно из углеродных нанотрубок, тоже имеют свои недостатки. Так, аэрогель из графена плотностью 5,1 мг/см 3 не разрушался под нагрузкой, превосходящей его собственный вес в 50 000 раз, и восстанавливал форму после сжатия на 80% от исходного размера. Однако из-за того, что графеновые листы обладают недостаточной жесткостью при изгибе, уменьшение их плотности ухудшает упругие свойства аэрогеля из графена.
Аэрогель из углеродных нанотрубок обладает другим недостатком: он более жесткий, но вообще не восстанавливает форму после снятия нагрузки, поскольку нанотрубки под нагрузкой необратимо изгибаются и перепутываются, а нагрузка плохо передается между ними.
Напомним, что деформация — это изменение положения частиц физического тела друг относительно друга, а упругая деформация — это такая деформация, которая исчезает вместе с исчезновением силы, ее вызвавшей. «Степень» упругости тела (так называемый модуль упругости) определяется зависимостью механического напряжения, возникшего внутри образца при приложении деформирующей силы, от упругой деформации образца. Напряжение в данном случае — это сила, приложенная к образцу на единицу его площади. (Не путать с электрическим напряжением!)
Как продемонстрировала группа китайских ученых, эти недостатки полностью компенсируются, если использовать при приготовлении аэрогеля одновременно графен и нанотрубки. Авторы обсуждаемой статьи в Advanced Materials использовали водный раствор нанотрубок и оксида графена, вода из которого была удалена путем замораживания и сублимации льда — лиофилизации (см. также Freeze-drying), при которой также устраняются эффекты поверхностного натяжения, после чего оксид графена был химически восстановлен до графена. В получившейся структуре графеновые листы служили каркасом, а нанотрубки — ребрами жесткости на этих листах (рис. 2A, 2B). Как показали исследования под электронным микроскопом, графеновые листы перекрываются друг с другом и образуют трехмерный каркас с порами размером от десятков нанометров до десятков микрометров, а углеродные нанотрубки образуют перепутанную сеть и плотно прилегают к графеновым листам. По-видимому, это вызвано выталкиванием нанотрубок растущими ледяными кристалами при замораживании исходного раствора.
Рис. 2. Вверху (A, B): микроструктура композитного аэрогеля из графена и нанотрубок при разных увеличениях. Внизу (C, D): образцы аэрогеля. Фотографии из обсуждаемой статьи в Advanced Materials
При испытаниях образцы такого композитного аэрогеля сохраняли форму и микроструктуру после 1000 повторных сжатий на 50% от исходного размера. Сопротивляемость сжатию приблизительно пропорциональна плотности аэрогеля и во всех образцах постепенно возрастает с увеличением деформации (рис. 3A). В диапазоне от –190°С до 300°С упругие свойства полученных аэрогелей почти не зависят от температуры.
Рис. 3. Реакция образцов аэрогеля на повторные нагрузки и на растяжение. A — зависимость напряжения от деформации в испытаниях аэрогеля плотностью 1 мг/см 3 на повторные нагрузки при сжатии (черная линия — первый цикл, красная — десятый, синяя — 1000-й). B — испытания образца аэрогеля плотностью 1,5 мг/см 3 на растяжение. Обратите внимание, что напряжение на правом графике приведено в кПа, а на левом — в Па. При растяжении на 10% наблюдается в десятки раз большее напряжение, чем при таком же сжатии, что говорит о гораздо большей жесткости материала при растяжении. Рисунок из обсуждаемой статьи в Advanced Materials
Этот набор свойств авторы объяснили синергетическим взаимодействием графена и нанотрубок, при котором свойства компонентов взаимно дополняют друг друга. Углеродные нанотрубки, покрывающие графеновые листы, служат связью между соседними листами, которая улучшает передачу нагрузки между ними, а так же ребрами жесткости для самих листов. Благодаря этому нагрузка приводит не к движению листов друг относительно друга (как в аэрогеле из чистого графена), а к упругой деформации самих листов. А поскольку нанотрубки плотно прилегают к листам и их положение задается положением листов, они не испытывают необратимых деформаций и перепутывания и не движутся друг относительно друга под нагрузкой, как в неэластичном аэрогеле только из нанотрубок. Оптимальными свойствами обладает аэрогель, состоящий поровну из графена и нанотрубок, а с увеличением содержания нанотрубок они начинают образовывать «колтуны», как в аэрогеле только из нанотрубок, что приводит к потере эластичности.
Кроме описанных упругих свойств композитный углеродный аэрогель обладает и другими необычными свойствами. Он электропроводен, причем электропроводность обратимо меняется при упругой деформации. Кроме того, аэрогель из графена и углеродных нанотрубок отталкивает воду, но при этом прекрасно абсорбирует органические жидкости — 1,1 г толуола на воде было полностью абсорбировано куском аэрогеля весом 3,2 мг за 5 секунд (рис. 4). Это открывает прекрасные возможности для ликвидации разливов нефти и очищении воды от органических жидкостей: всего 3,5 кг такого аэрогеля могут абсорбировать тонну нефти, что в 10 раз больше, чем емкость коммерчески используемого абсорбента. При этом абсорбент из композитного аэрогеля регенерируем: благодаря его эластичности и термической стойкости абсорбированная жидкость может быть выдавлена, как из губки, а остаток просто выжжен или удален испарением. Испытания показали, что свойства сохраняются после 10 таких циклов.
Рис. 4. Абсорбция аэрогелем органических жидкостей (в данном случае — подкрашенного толуола). На каждой фотографии справа внизу отмечено время, прошедшее от момента контакта аэрогеля и жидкости. Рисунок из обсуждаемой статьи в Advanced Materials
Разнообразие форм углерода и уникальные свойства этих форм и материалов, полученных на их основе, продолжают удивлять исследователей, так что в будущем можно ожидать все новых и новых открытий в этой области. Сколько всего можно сделать только из одного химического элемента!
См. также:
1) Wencai Ren & Hui-ming Cheng. When two is better than one // Nature. 2013. V. 497. P. 448–449.
2) Тим Скоренко. Когда воздух кажется тяжелым, «Популярная механика» №6, 2013.
Графеновый аэрогель. Самый легкий материал в мире поможет с ликвидацией разливов нефти
По словам создателей, кусок этого аэрогеля настолько невесом, что его без труда могут удержать лепестки какого-либо цветка и даже не прогнутся под ним.
Разработать такой сверхлегкий материал ученым удалось благодаря лиофилизированному процессу, устраняющему влагу из цепи углеродных нанотрубок и графена, но при этом сохраняющему все их характеристики.
Данный материал можно можно использовать для ликвидации нефтяных разливов в воде.
Производство графенового аэрогеля не потребует крупных затрат, зато отдача от него обещает быть суперэффективной.
К примеру, абсорбирующие современные материалы, которые в настоящее время применяются для сбора нефти, могут поглощать объем, в 10 раз превышающий их массу.
У нового материала этот показатель заметно выше – 1 грамм поглощает 68,8 г/сек органики.
Это в 900 раз больше своего веса.
При этом, аэрогель, поглотивший нефть, может быть технологично отделен от нефти и использоваться многократно.
В ликвидации аварийных разливов нефти потенциал графенового аэрогеля огромен.
Эволюция самых легких материалов началась с углеродных нанотрубок весом 4 мг/см3.
Затем появился аэрогель двуокиси кремния, который весил в 1 мг/см3 и получил 15 записей в Книгу рекордов Гиннесса.
Новый графеновый аэрогель создан учеными под руководством профессора Гао Чао в Zhejiang University.