кгс самолет что это
Кгс самолет что это
Курсо-глиссадная система ( сокр. КГС, в английской терминологии — Instrument Landing System, ILS) — радионавигационная система обеспечения захода на посадку по приборам.
Бортовое оборудование ЛА (например Курс-МП, VIM-95 и др.), представляет собой комплекс из двух радиоприёмных устройств с направленными антеннами (курсовая и глиссадная). Для упрощённого рассмотрения принципа работы бортовой части КГС рассмотрим работу курсового канала. В случае, если самолет находится точно на пересечении двух лепестков диаграммы, глубина модуляции обоих сигналов одинакова, а их разность, соответственно равна нулю. Если ЛА отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше мощность выходного сигнала. Полярность сигнала показывает в какую сторону отклонение. Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости. Выходной сигнал выдаётся на планки командно-пилотажного прибора КППМ, по которому экипаж визуально фиксирует точность захода на посадку.
Рабочий диапазон частот КГС:
Дальность действия в соответствии с нормами ICAO:
Согласно документам ICAO КГС делятся на категории.
Стандартная КГС, которая классифицируется как КГС I категории, позволяет выполнять заходы на посадку при облачности не ниже 60 м над полосой и видимости 700 м (2400 фт), либо при видимости 550 м (1800 фт) если есть освещение осевой линии и зоны посадки.
Более сложные системы II и III категории позволяют выполнять посадку при почти нулевой видимости, но требуют cпециальной дополнительной сертификации самолёта и пилота.
Заходы по II категории позволяют выполнять посадку при высоте принятия решения 30м (100фт) и видимости 400м (1200фт).
При посадке по III категории самолёт приземляется с использованием системы автоматической посадки, высота принятия решения отсутствует, а видимость должна быть не ниже 250 м (700фт) по категории IIIa, либо от 50-250 м по категории IIIb. Каждая КГС, сертифицированная по III категории, имеет свои собственные установленные высоты принятия решения и минимумы. Некоторые КГС имеют сертификацию для посадок в условиях нулевой видимости (категория IIIc).
Системы II и III категорий должны иметь освещение осевой линии, зоны посадки и другие вспомогательные средства.
КГС должна выключаться в случае сбоев. С увеличением категории оборудование должно выключаться быстрее. Например, курсовой маяк I категории должен выключиться через 10 секунд после обнаружения сбоя, а маяк III категории должен выключиться менее чем через 2 секунды.
Курсовой радиомаяк КРМ-90 системы посадки СП-90
Новости
Наверное, многих авиапассажиров интересовал вопрос, как пилоты так метко сажают самолет на взлетно-посадочную полосу? Ведь приземлиться необходимо в определенную точку, не только не смещаясь в сторону, но и в нужное время.
Существует два типа захода на посадку: «по приборам» и «визуально». Посадка «по приборам» бывает различных видов в зависимости от установленного в аэропорту оборудования и делится на точный и не точный заход на посадку. Отличие состоит в том, что при точном заходе оборудование осуществляет как боковое (помогает приземлиться на полосу, не отклоняясь в стороны) так и вертикальное наведение (отвечает за точное приземление в начало полосы). Точный заход делится на категории точности. Чем выше категория, тем в более сложных метеоусловиях возможно приземление в аэропорту.
В данной статье пойдет речь о наиболее популярной в крупных аэропортах системе захода на посадку, называемой КГС (курсоглиссадная система) или на английском, ILS (Instrument Landing System). Данная система является точной системой захода.
Немного о терминах. Курсом называется направление движения самолета. А глиссадой траекторией — траектория снижения самолета на взлетно-посадочную полосу.
Система автопосадки КГС упрощенно работает следующим образом: на земле устанавливаются специальные излучатели радиоволн (маяки), которые излучают в сторону самолета по два пучка радиоволн горизонтально (курсовой маяк) и вертикально (глиссадный маяк). На пересечении двух пучков сила радиоволн этих пучков одинаковая. Бортовое оборудование самолета определяет силу радиоволн и отклонение самолета от посадочного курса.
Далее, в зависимости от оборудования самолета и режима посадки, выбранного пилотом, прибор может просто отображать на приборной панели это отклонение, и пилотам требуется направлять самолет в нужную сторону с необходимым снижением, либо автопилот сам будет направлять самолет по заданной траектории посадки.
В одном аэропорту могут рядом находится несколько взлетно-посадочных полос. Для каждой из них радиоволны КГС будут передаваться на разной частоте. Курсовой маяк кроме основных радиоволн передает специальный код азбукой Морзе. Это позволяет пилоту удостовериться, что система настроена на правильную КГC. Частоты системы и код имеются в полетной документации у пилотов.
При этом все равно существует вероятность захвата ложного сигнала. Для дополнительного контроля используются дальний и ближний маяки. Это оборудование, установленное на определенном удалении от взлетно-посадочной полосы. Оно излучает радиосигнал частотой 75 МГц узким пучком вверх. При пролете над этими маяками в самолете загорается специальная индикация и раздается звуковой сигнал. Дальний радиомаяк располагается на расстоянии 4км от взлетно-посадочной полосы. В зависимости от схемы посадки самолет пролетает эту точку на высоте около 220 метров. В этой точке пилоты должны проконтролировать работу КГС, текущую высоту полёта и продолжить снижение. Ближний радиомаяк располагается на расстоянии 1км от взлетно-посадочной полосы. В большинстве случаев — это точка принятия решения командиром о посадке. Если в данной точке пилоты не видят полосу, они обязаны уйти на второй круг.
За работой курсоглиссадной системы следит специальное оборудование и, при возникновении неполадок, отключает её. При этом у пилотов в самолете появляется индикация о неработающей системе.
Бортовое оборудование, работающее с системой, использует милливольтные напряжения, поэтому любые устройства пассажиров самолета, которые могут создать радиоизлучение, напрямую угрожают жизни их самих и окружающих их пассажиров.
Курсо-глиссадные системы
Наземное оборудование системы ИЛС (ILS) состоит из курсового и глиссадного радиомаяка и трех маркерных радиомаяков (в настоящее время ближний маркер устанавливается не во всех аэропортах). В некоторых аэропортах для построения маневра захода на посадку на дальнем маркерном пункте устанавливается приводная радиостанция.
При выполнении международных полетов можно встретить два варианта размещения наземного оборудования.
Курсовые маяки системы ИЛС работают в круговом варианте. В последнее время устанавливаются маяки секторного варианта: угловая ширина сектора по 70° в обе стороны от линии посадки. Основные характеристики зон курса и глиссады ИЛС приведены в разделе наземного оборудования СП-50, поскольку они совпадают с соответствующими характеристиками СП-50 при новой регулировке.
Маркерные маяки системы ИЛС работают на той же частоте (75 Мгц), что и в системе СП-50 и излучают следующие кодовые сигналы: ближний маркер — шесть точек в секунду; средний маркер — поочередно два тире и шесть точек в секунду; дальний маркер (в материалах ИКАО — внешний маркер) — два тире в секунду.
Наземное оборудование системы СП-50 размещается в аэропортах гражданской авиации по единой типовой схеме.
В результате проведенной регулировки оборудования системы СП-50 в соответствии со стандартами ИКАО, принятыми для системы ИЛС, курсовые и глиссадные радиомаяки имеют следующие технические данные.
Зона курсового радиомаяка. Осевая линия зоны курса совмещается с осью ВПП. Линейная ширина зоны на расстоянии 1350 м от точки приземления равна 150 м (в пределах от 120 до 195 м), что соответствует угловому отклонению от продольной оси ВПП не менее 2° и не более 3°.
Дальность действия маяка обеспечивает прием сигналов на расстоянии более 70 км от начала ВПП при высоте полета 1000 м в секторе шириной по 10° с каждой стороны от оси ВПП (см. 91). Для курсового маяка ИЛС дальность действия регламентирована 45 км при высоте полета 600 м.
Зона глиссадного радиомаяка. Оптимальный угол наклона глиссады планирования равен 2°40′. При наличии препятствий в секторе подхода угол наклона глиссады увеличивается до 3°20′ и в исключительных случаях может доходить до 4—5°. При оптимальном угле наклона глиссады снижения 2°40′ самолет при снижении пролетает над дальним и ближним маркерами (при их стандартном расположении) на высотах соответственно 200 и 60 м.
Угловая ширина зоны глиссады при оптимальном угле ее наклона может быть в пределах 0,5—1°4, причем с увеличением угла наклона растет скорость снижения, а ширина зоны повышается для облегчения пилотирования самолета.
Дальность действия глиссадного радиомаяка обеспечивает прием сигналов на расстоянии не менее 18 км от него в секторах по 8® вправо и влево от линии посадки. Эти секторы, в которых обеспечивается прием сигналов, ограничены по высоте углом над горизонтом, равным 0,3 угла глиссады снижения, и углом над глиссадой, равным 0,8 угла глиссады снижения.
Наземное оборудование системы СП-50М предназначено для использования ее при директорном и автоматических заходах на посадку по нормам ИКАО 1-й категории сложности.
Стабильность залегания осевой линии курса обеспечивается более жесткими требованиями, предъявляемыми к аппаратуре.
В случаях когда длина ВПП значительно превышает оптимальную, ширина курсовой зоны устанавливается не менее 1°75′ (полузона).
Все остальные параметры курсоглиссадных маяков регулируются строго в соответствии с техническими нормами ИКАО.
Системы директорного управления заходом ка посадку
В настоящее время на самолетах гражданской авиации с ГТД устанавливаются системы директорного (командного) управления заходом на посадку («Привод», «Путь»). Эти системы являются системами полуавтоматического управления самолетом при заходе на посадку.
Командным прибором в таких системах является нуль-индикатор ПСП-48 или КПП-М.
Под полуавтоматическим управлением следует понимать пилотирование самолета по командному прибору, стрелки которого при заходе на посадку с момента начале четвертого разворота и на посадочной прямой необходимо удерживать на нуле. В отличие от обычного захода по СП-50 нуль-индикатор в данном случае не информирует пилота о положении относительно равносигнальных зон курсового и глиссадного маяков, а указывает ему, какие углы крена и тангажа нужно выдерживать для точного выхода в равносигнальные зоны и следования в них.
Система директорного управления упрощает пилотирование путем преобразования навигационно-пилотажной информации о положении самолета в пространстве и формирования ее в управляющий сигнал, который индицируется на командных приборах. Отклонение командной стрелки является функцией нескольких параметров, которые в обычном заходе на посадку пилот учитывает по отдельным приборам: ПСП-48 системы СП-50, авиагоризонт, компас и вариометр. Поэтому командные стрелки находятся в центре шкалы не только тогда, когда самолет следует строго в равносигнальных зонах курса и глиссады, но и когда осуществляется правильный выход к равносигнальным зонам.
На самолеты, уже находящиеся в эксплуатации, устанавливаются упрощенные системы директорного управления, действующие на базе существующего бортового и наземного оборудования: курсовой радиоприемник КРП-Ф, глиссадный радиоприемник ГРП-2, навигационный индикатор НИ-50БМ или задатчик курса ЗК-2Б, центральная гировертикаль ЦГВ или гиродатчики (АГД, ППС). Кроме того, в комплект входит: вычислитель, блок связи с автопилотом при наличии связи с АП на самолете.
Маневр захода на посадку на самолете, оборудованном системой директорного управления, выполняется таким образом:
1. Получив разрешение на вход в зону аэропорта, оборудованного системой СП-50 или ИЛС, экипаж, действуя в соответствии с утвержденной для данного аэропорта схемой, выводит самолет к месту начала четвертого разворвта; при этом экипаж обязан:
2. Момент начала четвертого разворота можно определить:
3. В момент начала четвертого разворота создать сторону отклонения курсовой планки командного прибора такой крен, при котором она установится на нуль шкалы. В процессе разворота пилот должен удерживать стрелку нуль-индикатора в центре шкалы, уменьшая или увеличивая крен. Крен всегда создается в сторону отклонения стрелки.
В случае раннего начала четвертого разворота для удержания курсовой стрелки в нулевом положении первоначально потребуется создать крен 17—20°, который впоследствии необходимо уменьшить в отдельных случаях вплоть до полного вывода самолета из крена. Однако при подходе к створу ВПП курсовая стрелка командного прибора покажет необходимость создания крена, потребного для плавного вписывания в линию посадки.
При позднем начале четвертого разворота происходит изменение курса на угол, больший чем 90°, и знак крена меняется. При этом весь маневр, включая и учет угла сноса, отрабатывается системой автоматически.
При выполнении четвертого разворота нужно постоянно следить, чтобы бленкеры курса были закрыты на всех нуль-индикаторах.
4. После выполнения четвертого разворота и входа в равносигнальную зону курса следует продолжать полет без снижения, удерживая кренами директорную стрелку командного прибора в центре шкалы. При
этом необходимо следить за стрелкой глиссады, которая после выполнения четвертого разворота будет отклонена вверх. Бленкеры глиссады должны быть закрыты.
Как только стрелка командного прибора приблизится к белому кружку, немедленно начать снижение, удерживая директорную стрелку глиссады в центре черного кружка.
5. По высоте пролета ДПРМ определить возможность продолжения снижения по глиссаде: если над ДПРМ при нахождении стрелки глиссады в пределах белого кружка высота полета будет равна или превышать установленную для данного аэропорта, то можно продолжать дальнейшее снижение по глиссаде; если же при правильном выдерживании глиссады самолет достиг установленной высоты пролета ДПРМ и не последовало сигналов фактического ее пролета, то немедленно прекратить снижение по глиссаде и в дальнейшем после пролета ДПРМ снижение производить по правилам, установленным для системы ОСП.
6. После пролета ДПРМ удерживать директорные стрелки командного нуль-индикатора в нулевом положении, не допуская при этом снижения вне видимости земли ниже установленного для данного аэропорта минимума погоды.
При обнаружении земли (посадочных огней) необходимо перейти на визуальный полет и произвести посадку.
Ошибки в установке курса на автомате НИ-50БМ, превышающие в сумме с углом сноса 15°, вообще не позволят осуществить заход на посадку по системе директорного управления. Во избежание этого перед началом четвертого разворота штурман должен вновь убедиться в правильности установки «Угла карты» на автомате курса НИ-50БМ й в правильности работы курсовой системы. При показаниях магнитного курса, значительно больших фактического курса на посадочной прямой, самолет будет отклоняться вправо от оси равносигнальной зоны курсового радиомаяка, а при заниженных показаниях — влево. Для обеспечения хорошей точности работы системы на посадочной прямой при больших углах сноса штурман должен обеспечить работу курсовой системы с высокой точностью; ошибка не должна превышать ±2°.
Кроме того, точность выхода самолета на ось ВПП и следования вдоль нее зависит также от точности залегания зоны курсового радиомаяка и установки на нуль курсовой стрелки поворотом кнопки на щитке управления СП-50.
Заход на посадку по курсо-глиссадной системе
Состав и принцип работы КГС
Итак, из чего состоит КГС:
Теперь о том, как работают эти маяки. Возьмем за основу курсовой маяк и несколько упрощенно рассмотрим его работу. При работе маяк формирует 2 разночастотных сигнала, которые схематично можно показать как 2 лепестка, направленные вдоль траектории захода на посадку.
В случае, если самолет находится точно на пересечении этих двух лепестков, мощность обоих сигналов одинакова, соответственно разность их мощностей равна нулю, и индикаторы прибора выдают 0. Мы на курсе. Если самолет отклонился влево или вправо, то один сигнал начинает преобладать над другим. И чем дальше от линии курса, тем больше это преобладание. В результате этого за счет разницы в мощности сигнала приемник самолета точно устанавливает, насколько далеко мы от линии курса.
Глиссадный маяк работает точно по такому же принципу, только в вертикальной плоскости.
Читаем показания приборов
Итак, мы вошли в зону действия КГС. Планки на ПНП отшкалили, значит пора нам сориентироваться, где мы находимся и как нам надо пилотировать самолет, чтобы точно вписаться в траекторию захода.
Теперь давайте пройдемся по разным положениям самолета и посмотрим на индикацию прибора в положениях, указанных на общем рисунке.
2. Мы находимся в точке входа в глиссаду (ТВГ). Это точка, образованная пересечением глиссады с высотой круга. Средняя величина удаления ТВГ составляет примерно 12 км. Естественно, чем выше высота круга и чем меньше УНГ, тем дальше от порога ВПП находится ТВГ.
3. Мы находимся левее и выше. Надо довернуть вправо и увеличить скорость снижения.
4. Мы находимся левее и ниже. Приберем вертикальную и довернем вправо.
5. Мы находимся правее и выше. Довернем влево и увеличим вертикальную.
6. Мы правее и ниже. Догадайтесь, что нужно сделать 🙂
Ну в общем-то это все, что хотелось вам сообщить 🙂
Напоследок хочу сделать одно весьма важное дополнение.
Учтите, что чем ближе мы находимся к ВПП, тем меньше должны быть эволюции самолета, потому что прибор становится очень чувствительным. К примеру, если мы находимся на удалении 10 км от порога ВПП, положение курсовой планки на второй точке шкалы может означать боковое отклонение в 400 метров или более (это к примеру). Чтобы довернуть, нам понадобится изменить курс на 4-5 градусов или более. Если же мы находимся на удалении 2 км, то такое положение планки означает, что отклонения превысили предельно допустимые, и единственное, что нам остается, это уходить на второй круг. Чем ближе самолет к порогу ВПП, тем ближе к центру должна быть курсовая планка. В идеале конечно точно в центре 🙂 И соответственно, чем мы ближе, тем меньше должны быть эволюции самолета. Нет смысла закладывать 30-градусный крен в районе ближнего привода. Во-первых, это опасно на такой высоте, во-вторых вы просто не успеете довернуть, учитывая инерцию самолета.
То же самое касается и глиссады. Если мы находимся ниже глиссады, то на большом удалении нам иногда приходится уменьшать вертикальную до нуля, а на маленьком удалении это было бы неверно опять же из-за опасности перелета и, соответственно, выкатывания за ВПП.
Поэтому обязательно учитывайте удаление от порога ВПП, прежде чем начинать маневрирование. В общем-то поэтому ТВГ и сделали на таком большом удалении, чтобы вы успели поправить все ошибки и точно выполнить заход 🙂
Встреча с землей: как сажают самолеты
Современный реактивный пассажирский лайнер предназначен для полетов на высотах примерно 9−12 тысяч метров. Именно там, в сильно разреженном воздухе, он может двигаться в наиболее экономичном режиме и демонстрировать свои оптимальные скоростные и аэродинамические характеристики. Промежуток от завершения набора высоты до начала снижения называется полетом на крейсерском эшелоне. Первым этапом подготовки к посадке будет снижение с эшелона, или, иными словами, следование по маршруту прибытия. Конечный пункт этого маршрута — так называемая контрольная точка начального этапа захода на посадку. По-английски она называется Initial Approach Fix (IAF).
С точки IAF начинается движение по схеме подхода к аэродрому и захода на посадку, которая разрабатывается отдельно для каждого аэропорта. Заход по схеме предполагает дальнейшее снижение, прохождение траектории, заданной рядом контрольных точек с определенными координатами, часто выполнение разворотов и, наконец, выход на посадочную прямую. В определенной точке посадочной прямой лайнер входит в глиссаду. Глиссада (от фр. glissade — скольжение) представляет собой воображаемую линию, соединяющую точку входа с началом взлетно-посадочной полосы. Проходя по глиссаде, самолет достигает точки MAPt (Missed Approach Point), или точки ухода на второй круг. Эта точка проходится на высоте принятия решений (ВПР), то есть высоте, на которой должен быть начат маневр ухода на второй круг, если до ее достижения командиром воздушного судна (КВС) не был установлен необходимый визуальный контакт с ориентирами для продолжения захода на посадку. До ВПР КВС уже должен оценить положение самолета относительно ВПП и дать команду «Садимся» или «Уходим».
Шасси, закрылки и экономика
21 сентября 2001 года самолет Ил-86, принадлежавший одной из российских авиакомпаний, произвел посадку в аэропорту Дубаи (ОАЭ), не выпустив шасси. Дело закончилось пожаром в двух двигателях и списанием лайнера — к счастью, никто не пострадал. Не было и речи о технической неисправности, просто шасси. забыли выпустить.
К подоплеке этого авиапроисшествия имеет отношение экономика. Подход к аэродрому и заход на посадку связаны с постепенным уменьшением скорости воздушного судна. Поскольку величина подъемной силы крыла находится в прямой зависимости и от скорости, и от площади крыла, для поддержания подъемной силы, достаточной для удержания машины от сваливания в штопор, требуется площадь крыла увеличить. С этой целью используются элементы механизации — закрылки и предкрылки. Закрылки и предкрылки выполняют ту же роль, что и перья, которые веером распускают птицы, перед тем как опуститься на землю. При достижении скорости начала выпуска механизации КВС дает команду на выпуск закрылков и практически одновременно — на увеличение режима работы двигателей для предотвращения критической потери скорости из-за роста лобового сопротивления. Чем на больший угол отклонены закрылки/предкрылки, тем больший режим необходим двигателям. Поэтому чем ближе к полосе происходит окончательный выпуск механизации (закрылки/предкрылки и шасси), тем меньше будет сожжено топлива.
На отечественных воздушных судах старых типов была принята такая последовательность выпуска механизации. Сначала (за 20−25 км до полосы) выпускалось шасси. Затем за 18−20 км — закрылки на 280. И уже на посадочной прямой закрылки выдвигались полностью, в посадочное положение. Однако в наши дни принята иная методика. В целях экономии летчики стремятся пролететь максимальное расстояние «на чистом крыле», а затем, перед глиссадой, погасить скорость промежуточным выпуском закрылков, потом выпустить шасси, довести угол закрылков до посадочного положения и совершить посадку.
Экипаж злополучного Ил-86 тоже воспользовался новой методикой и выпустил закрылки до шасси. Ничего не знавшая о новых веяниях в пилотировании автоматика Ил-86 тут же включила речевую и световую сигнализацию, которая требовала от экипажа выпустить шасси. Чтобы сигнализация не нервировала пилотов, ее просто отключили, как выключают спросонья надоевший будильник. Теперь напомнить экипажу, что шасси все-таки надо выпустить, было некому. Сегодня, правда, уже появились экземпляры самолетов Ту-154 и Ил-86 с доработанной сигнализацией, которые летают по методике захода на посадку с поздним выпуском механизации.
По фактической погоде
В информационных сводках нередко можно услышать подобную фразу: «В связи с ухудшением метеоусловий в районе аэропорта N экипажи принимают решения о взлете и посадке по фактической погоде». Этот распространенный штамп вызывает у отечественных авиаторов одновременно смех и возмущение. Разумеется, никакого произвола в летном деле нет. Когда самолет проходит точку принятия решения, командир воздушного судна (и только он) окончательно объявляет, станет ли экипаж сажать лайнер или посадка будет прервана уходом на второй круг. Даже при наилучших погодных условиях и отсутствии препятствий на полосе КВС имеет право отменить посадку, если он, как гласят Федеральные авиационные правила, «не уверен в благополучном исходе посадки». «Уход на второй круг сегодня не считается просчетом в работе пилота, а наоборот, приветствуется во всех допускающих сомнения ситуациях. Лучше проявить бдительность и даже пожертвовать каким-то количеством сожженного топлива, чем подвергнуть даже малейшему риску жизнь пассажиров и экипажа», — объяснил нам Игорь Бочаров, начальник штаба летной эксплуатации авиакомпании «S7 Airlines».
С другой стороны, в принятии решений КВС жестко ограничен существующим регламентом процедуры посадки, и в пределах этого регламента (кроме экстренных ситуаций вроде пожара на борту) у экипажа нет никакой свободы принятия решений. Существует жесткая классификация типов захода на посадку. Для каждого из них прописаны отдельные параметры, определяющие возможность или невозможность такой посадки в данных условиях.
Например, для аэропорта «Внуково» инструментальный заход на посадку по неточному типу (по приводным радиостанциям) требует прохождения точки принятия решений на высоте 115 м при горизонтальной видимости 1700 м (определяется метеослужбой). Для совершения посадки до ВПР (в данном случае 115 м) должен быть установлен визуальный контакт с ориентирами. Для автоматической посадки по II категории ИКАО эти значения значительно меньше — они составляют 30 м и 350 м. Категория IIIс допускает полностью автоматическую посадку при нулевой горизонтальной и вертикальной видимости — например, в полном тумане.
Безопасная жесткость
Любой авиапассажир с опытом полетов отечественными и иностранными авиакомпаниями наверняка успел заметить, что наши пилоты сажают самолеты «мягко», а иностранные — «жестко». Иными словами, во втором случае момент касания полосы ощущается в виде заметного толчка, тогда как в первом — самолет мягко «притирается» к полосе. Различие в стиле посадки объясняется не только традициями летных школ, но и объективными факторами.
Для начала внесем терминологическую ясность. Жесткой посадкой в авиационном обиходе называется посадка с перегрузкой, сильно превышающей нормативную. В результате такой посадки самолет в худшем случае получает повреждение в виде остаточной деформации, а в лучшем — требует специального технического обслуживания, нацеленного на дополнительный контроль состояния самолета. Как объяснил нам ведущий пилот-инструктор департамента летных стандартов авиакомпании «S7 Airlines» Игорь Кулик, сегодня пилот, допустивший настоящую жесткую посадку, отстраняется от полетов и направляется на дополнительную подготовку на тренажерах. Прежде чем снова выйти в рейс, провинившемуся также предстоит зачетно-тренировочный полет с инструктором.
Стиль посадки на современных западных самолетах нельзя называть жестким — речь просто идет о повышенной перегрузке (порядка 1,4−1,5 g) по сравнению с 1,2−1,3 g, характерных для «отечественной» традиции. Если говорить о методике пилотирования, то разница между посадками с относительно меньшей и относительно большей перегрузкой объясняется различием в процедуре выравнивания самолета.
К выравниванию, то есть к подготовке к касанию с землей, пилот приступает сразу после пролета торца полосы. В это время летчик берет штурвал на себя, увеличивая тангаж и переводя воздушное судно в кабрирующее положение. Попросту говоря, самолет «задирает нос», чем достигается увеличение угла атаки, а значит, небольшой рост подъемной силы и падение вертикальной скорости.
Двигатели при этом переводятся в режим «малый газ». Через некоторое время задние стойки шасси касаются полосы. Затем, уменьшая тангаж, пилот опускает на полосу переднюю стойку. В момент касания задействуются интерцепторы (спойлеры, они же воздушные тормоза). Затем, уменьшая тангаж, пилот опускает на полосу переднюю стойку и включает реверсивное устройство, то есть дополнительно тормозит двигателями. Торможение колесами применяется, как правило, во второй половине пробега. Реверс конструктивно представляет из себя щитки, которые ставятся на пути реактивной струи, отклоняя часть газов под углом 45 градусов к курсу движения самолета — почти в обратную сторону. Следует отметить, что на воздушных судах старых отечественных типов использование реверса при пробеге обязательно.
24 августа 2001 года экипаж аэробуса А330, совершавшего рейс из Торонто в Лиссабон, обнаружил утечку топлива в одном из баков. Дело происходило в небе над Атлантикой. Командир корабля Робер Пиш принял решение уйти на запасной аэродром, расположенный на одном из Азорских островов. Однако по пути загорелись и вышли из строя оба двигателя, а до аэродрома оставалось еще около 200 километров. Отвергнув идею посадки на воду, как не дающую практически никаких шансов на спасение, Пиш решил дотянуть до суши в планирующем режиме. И ему это удалось! Посадка получилась жесткой – лопнули почти все пневматики – но катастрофы не произошло. Лишь 11 человек получили небольшие травмы.
Отечественные летчики, особенно эксплуатирующие лайнеры советских типов (Ту-154, Ил-86), часто завершают выравнивание процедурой выдерживания, то есть какое-то время продолжают полет над полосой на высоте около метра, добиваясь мягкого касания. Конечно, посадки с выдерживанием нравятся пассажирам больше, да и многие пилоты, особенно с большим опытом работы в отечественной авиации, считают именно такой стиль признаком высокого мастерства.
Однако сегодняшние мировые тенденции авиаконструирования и пилотирования отдают предпочтение посадке с перегрузкой 1,4−1,5 g. Во-первых, такие посадки безопаснее, так как приземление с выдерживанием содержит в себе угрозу выкатывания за пределы полосы. В этом случае практически неизбежно применение реверса, что создает дополнительный шум и увеличивает расход топлива. Во-вторых, сама конструкция современных пассажирских самолетов предусматривает касание с повышенной перегрузкой, так как от определенного значения физического воздействия на стойки шасси (обжатие) зависит срабатывание автоматики, например задействование спойлеров и колесных тормозов. В воздушных судах старых типов этого не требуется, так как спойлеры включаются там автоматически после включения реверса. А реверс включается экипажем.
Есть еще одна причина различия стиля посадки, скажем, на близких по классу Ту-154 и А 320. Взлетные полосы в СССР зачастую отличались невысокой грузонапряженностью, а потому в советской авиации старались избегать слишком сильного давления на покрытие. На тележках задних стоек Ту-154 по шесть колес — такая конструкция способствовала распределению веса машины на большую площадь при посадке. А вот у А 320 на стойках всего по два колеса, и он изначально рассчитан на посадку с большей перегрузкой на более прочные полосы.
Неприятности у самой земли
И все-таки по-настоящему жесткие посадки, а также прочие неприятности на финальном отрезке полета случаются. Как правило, к авиапроисшествиям приводит не один, а несколько факторов, среди которых и ошибки пилотирования, и отказ техники, и, конечно же, стихия.
Большую опасность представляет так называемый сдвиг ветра, то есть резкое изменение силы ветра с высотой, особенно когда это происходит в пределах 100 м над землей. Предположим, самолет приближается к полосе с приборной скоростью 250 км/ч при нулевом ветре. Но, спустившись чуть ниже, самолет вдруг наталкивается на попутный ветер, имеющий скорость 50 км/ч. Давление набегающего воздуха упадет, и скорость самолета составит 200 км/ч. Подъемная сила также резко снизится, зато вырастет вертикальная скорость. Чтобы компенсировать потерю подъемной силы, экипажу потребуется добавить режим двигателя и увеличить скорость. Однако самолет обладает огромной инертной массой, и мгновенно набрать достаточную скорость он просто не успеет. Если нет запаса по высоте, жесткой посадки избежать не удастся. Если же лайнер натолкнется на резкий порыв встречного ветра, подъемная сила, наоборот, увеличится, и тогда появится опасность позднего приземления и выкатывания за пределы полосы. К выкатываниям также приводит посадка на мокрую и обледеневшую полосу.
Типы захода на посадку делятся на две категории, визуальные и инструментальные.
Условие для визуального захода на посадку, как и при инструментальном заходе, – высота нижней границы облаков и дальность видимости на ВПП. Экипаж следует по схеме захода, ориентируясь по ландшафту и наземным объектам или самостоятельно выбирая траекторию захода в пределах выделенной зоны визуального маневрирования (она задается как половина окружности с центром в торце полосы). Визуальные посадки позволяют сэкономить топливо, выбрав кратчайшую на данный момент траекторию захода.
Вторая категория посадок – инструментальные (Instrumental Landing System, ILS). Они в свою очередь подразделяются на точные и неточные. Точные посадки производятся по курсо-глиссадной, или радиомаячной, системе, с помощью курсовых и глиссадных маяков. Маяки формируют два плоских радиолуча – один горизонтальный, изображающий глиссаду, другой – вертикальный, обозначающий курс на полосу. В зависимости от оборудования самолета курсо-глиссадная система позволяет производить автоматическую посадку (автопилот сам ведет самолет по глиссаде, получая сигнал радиомаяков), директорную посадку (на командном приборе две директорные планки показывают положения глиссады и курса; задача пилота, работая штурвалом, поместить их точно по центру командного прибора) или заход по маякам (перекрещенные стрелки на командном приборе изображают курс и глиссаду, а кружком показано положение самолета относительно требуемого курса; задача – совместить кружок с центром перекрестья). Неточные посадки выполняются при отсутствии курсо-глиссадной системы. Линия приближения к торцу полосы задается радиотехническим средством – например, установленными на определенном удалении от торца дальней и ближней приводными радиостанциями с маркерами (ДПРМ – 4 км, БПРМ – 1 км). Получая сигналы от «приводов», магнитный компас в кабине пилотов показывает, справа или слева от полосы находится самолет. В аэропортах, оснащенных курсо-глиссадной системой, значительная часть посадок совершается по приборам в автоматическом режиме. Международная организация ИКФО утвердила список из трех категорий автоматической посадки, причем категория III имеет три подкатегории – A, B, C. Для каждого типа и категории посадки существуют два определяющих параметра – расстояние горизонтальной видимости и высота вертикальной видимости, она же высота принятия решений. В общем виде принцип таков: чем больше в посадке участвует автоматика и чем меньше задействован «человеческий фактор», тем меньше значения этих параметров.
Другой бич авиации — боковой ветер. Когда при подходе к торцу полосы самолет летит с углом сноса, у пилота часто появляется желание «подвернуть» штурвалом, поставить самолет на точный курс. При довороте возникает крен, и самолет подставляет ветру большую площадь. Лайнер сдувает еще дальше в сторону, и в этом случае единственно правильным решением становится уход на второй круг.