кванта в музыке что это

Австрийцы придумали квантовую музыку

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Volkmar Putz, Karl Svozil, arXiv:1503.09045v1

Физик Карл Своцил и музыкант Фолькмар Путц предложили математическую модель квантования музыки. С ее помощью можно представить, каким образом в музыке могут реализовываться такие странные свойства квантового мира как суперпозиция, квантовая запутанность и принцип дополнительности. Полный текст работы доступен на сайте Корнелльского университета.

Для целей своей работы исследователи решили квантовать конкретный музыкальный инструмент – пианино. Чтобы упростить вычисления и задать строгие рамки модели, ученые квантовали только одну октаву, представленную восемью последовательными белыми клавишами (обычно обозначаемыми c, d, e, f, g, a, b, c). По аналогии с квантовой информацией каждому тону в музыкальной номенклатуре приписывается такие свойства как возможность находиться в суперпозиции или быть в запутанном состоянии.

Из этого следует, что если такое квантовое музыкальное состояние будет слушать аудитория из семи человек, то возможны случаи, когда каждый из них будет слышать в один момент времени разный музыкальный тон, а последовательность этих тонов для каждого слушателя всегда будет совершенно уникальной.

Два других возможных варианта квантования – это представить октаву как бозонное или фермионное поле. В этом случае каждый тон может иметь два значения 0 (0;1) или 1 (1;0), а каждое состояние такого тона может быть представлено двумерным Гилбертовым пространством. Если вернуться к нашему пианино, то это будет обозначать одновременное нажатие нескольких из восьми клавиш в каждый момент времени.

Также ученые предположили, что в квантовой музыке может реализовываться состояние квантовой запутанности, в котором квантовые состояния двух или большего числа объектов оказываются взаимозависимыми, причем эта взаимозависимость сохраняется, даже если объекты разнесены в пространстве за пределы любых известных взаимодействий. Прослушивание «запутанной мелодии» в таком случае будет зависеть от того, что именно услышал сосед по аудитории.

Ученые рассматривают свою работу прежде всего как «игру ума», а не как действительное исследование музыки и полагают, что она может вдохновить новые исследования в области квантовой механики и её применения.

Источник

Данная статья рассказывает о том, что «квант» – это понятие физики элементарных частиц. Здесь дается определение этой величины, показывается ее важность и приводится краткая история ее открытия.

Математика и физика

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Две самые страшные школьные дисциплины для учеников с гуманитарным складом ума однажды объединились, чтобы породить новый этап в изучении окружающего мира. Началось все с того, что Макс Планк, выводя формулу распределения излучения абсолютно черного тела, ввел понятие «квант». Значение слова буквально такое: наименьшая порция чего-либо, например, энергии, поля, момента инерции.

Причем применимо это понятие к микромиру: может быть квант света и гравитационного поля, но не может быть кванта массы или дождя. Чтобы читателю было яснее, приведем пример. Если бы все возможные состояния электрона были целой коровой, то квант – это наименьшая порция мяса, с помощью которой можно насытиться, то есть один стейк. Кстати, в известном фильме о Джеймсе Бонде под квантом милосердия наверняка подразумевается то, что даже у самого черствого человека есть хоть немного сострадания в душе.

Борьба за квантовую физику

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Поначалу Макс Планк действовал в рамках прежних представлений о физике. Он ввел в уравнение квант, значение которого в его глазах заключалось только в удобстве математического выражения. Таким образом, получается, что он открыл это понятие почти случайно, не стремясь совершить прорыв.

Вообще, он был добросовестным исследователем, усердно трудился над каждой темой и доводил дело до конца. Именно упорство и настойчивость позволили ему перевернуть физику. Не было никаких гениальных прозрений и внезапных идей. Возможно, поэтому еще долгое время он отрицал важность своего открытия и пытался как-то «приладить», примирить новое понятие со старым подходом к физике. Целая плеяда ученых, которые появились благодаря введению кванта, не смогли убедить его в фундаментальном значении одного-единственного предположения для будущего науки.

Значение для науки

Прежде всего, квант – это основа для понимания природы света. Ученые еще в семнадцатом веке довольно точно измерили скорость солнечных лучей, но объяснить их появление или поглощение поверхностями были не в силах. Выяснилось, что энергия электромагнитных волн с одинаковым приращением фазы по времени может принимать только значения, кратные E= (N+1/2) ħω. Поясним:

Приведенная выше формула обозначает, что энергия излучения ħω квантуется, то есть представляет собой набор конечных пакетов или фотонов.

Квант и материя

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Объяснив природу света, люди поняли, что квант – это не только математическая шутка, но и огромные возможности. Позже ученые выяснили, почему электроны в атомах могут находиться только на определенных орбитах. Это потребовало введения принципа корпускулярно-волнового дуализма для элементарных частиц.

Переход электрона между двумя орбиталями в атоме происходит всегда рывком. Это приводит к процессам, благодаря которым испускается или поглощается световой квант. Что значит этот факт для науки, поясним чуть ниже. В каждом типе атомов набор квантов перехода уникален. То есть набор энергий, необходимый для возбуждения электронов золота, не подходит платине. Это дает возможность определить, какой именно переход был совершен, и понять, какой тип атома изучается: водород или аргон, алюминий или магний.

На этом основании стоит самый мощный инструмент изучения и покорения материи – спектроскопия. Сферы применения анализа спектров весьма обширны, вот некоторые из них:

Читатель и сам легко представит, что использовать такой метод можно во всех сферах человеческой деятельности.

Типы квантов

Помимо уже описанного фотона, бывают и другие типы квантов:

Большой адронный коллайдер, который был построен в 2012 году, доказал: в его недрах родился новый квант, бозон Хиггса. Таким образом, физики показали, почему глюоны и фотоны не обладают массой покоя.

Лазер как следствие приручения квантов света

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Поняв, как получаются фотоны, ученые смогли «приручить» их. В результате появился лазер – источник монохроматических электромагнитных волн. При достаточно простых принципах, которые лежат в основании одновременной генерации фотонов одной длины волны (монохроматических), и простом строении самого устройства, возникали большие технические сложности.

Первой задачей было найти материал, в котором существовала бы инверсная заселенность электронов. Вторая задача состояла в том, чтобы создать два зеркала на торцах рабочего кристалла. Но обе они давно решены, причем понимание того, что такое квант, – это первый шаг к получению таких сложных устройств.

В современном мире лазер используется повсеместно. Его применяют как для забавы (лазерная указка), так и для серьезных целей (термоядерная реакция).

Источник

Кванта в музыке что это

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн. Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.

Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

А вот и нет. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы вэб-программист, и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.

Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И неожиданно у них по тогдашним, казалось бы логичным, формулам умника Максвелла выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечности не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла лесом.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто по-студенчески подогнал результат под задачу, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Чем больше частота волны, тем больше энергии несет в себе один квант. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной.

Хорошая аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики. На картинке, походу, нарисован прибор для изучения фотоэффекта.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Никто не мог, кроме Эйнштейна. Чтобы объяснить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.

Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.

Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау и прочие открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.

Comments

>Энергия же выбитых из пластинки электронов растет, если увеличить длину волны (частоту) света

Ошибочка в тексте. Увеличиваем частоту, а длину волны УМЕНЬШАЕМ!

> Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует.

Это упрощение для «гуманитариев», или косячок? 🙂

Формула ниже по тексту, та, что в синей рамочке: порция и частота жестко связаны, да. Но никакого ограничения по минимум на порцию нет.

— Как сказать. В общем-то, первоначально термин «элементарная частица» обозначал, вернее, подразумевал под собой нечто абсолютно элементарное, как говорят физики, первокирпичик материи. Однако после того, как в 1960-х годах были открыты сотни адронов с похожими свойствами, которые обладают внутренними степенями свободы и состоят из кварков, был придуман новый термин «фундаментальные частицы», обозначавший уже самые элементарные частицы, такие как лептоны, кварки и другие, якобы бесструктурные частицы, которые «невозможно расщепить на составные части». Пожалуй, я не буду вдаваться в тонкости физики, вряд ли вам это будет интересно. Но, так сказать, для общего понимания приведу простой пример. Давайте возьмём электрон. Надеюсь, всё знают, что это такое?

— А как же! Конечно знаем, — хвастливо заявил Женька. — Это такие маленькие-маленькие отрицательно заряжённые частицы, которые носятся вокруг атома, прямо как блохи по собаке.

Все рассмеялись. Сэнсэй махнул рукой, мол, ладно, хоть такое понимание присутствует в этой буйной головушке, и то хорошо, и продолжил:

— Так вот, электрон был первой элементарной частицей, которую в 1897 году открыл английский физик по фамилии Томсон. А вот первой открытой античастицей был позитрон. Это частица с массой электрона, только с положительным электрическим зарядом. Этот позитрон был обнаружен американским физиком Андерсоном в 1932 году. Ну, о том, что электронное строение атома определяет его свойства, в том числе и важную для химии способность атома образовывать химические соединения, я надеюсь, вы тоже знаете.

— Да! — гордо подтвердил Женька. — И собаки и блохи состоят из атомов, окружённых электронами. Количество электронов определяет кто из них собака, а кто блоха!

Под смех ребят Сэнсэй одобрительно кивнул:

— Пример, конечно, грубый, но по своей сути указывает на важность электронов. Итак, электроны, по мнению современных физиков, относятся к фундаментальным, то есть бесструктурным частицам. Но на самом деле электрон состоит из 13 частиц По или гравитонов. Так как гравитон чисто гипотетическая частица и экспериментально не доказана, но теоретически вычислена, и наиболее подходящая для обозначения частички По, то чисто гипотетически можно с уверенностью утверждать, что из всех «фундаментальных» частиц истинно таковым является только гравитон. Остальные состоят из 3-5-7-12-33-70 и так далее частичек По. Причём многие «фундаментальные» частички, состоящие из одного и того же числа частичек По, но имеющие разные формы и знаки заряда, соответственно играют и разные роли в этом театре материи. Примером тому служит тот же электрон и позитрон. Что в одном 13 частичек По, что в другом, что один имеет спиральную форму, что другой. Разница всего лишь в том, что один имеет отрицательный внешний заряд, «левую» спираль и положительный внутренний потенциал, а другой всё то же, только наоборот — положительный внешний заряд, «правую спираль» и отрицательный внутренний потенциал.

Николай Андреевич, внимательно выслушав Сэнсэя, тактично заметил:

— Я, конечно, не физик, спорить не буду. Но насколько я помню, электрон действительно имеет отрицательный заряд, а позитрон — положительный. О спиральной форме тоже ничего не могу сказать, не видел. Но Сэнсэй, о каком внутреннем потенциале ты говоришь, это ведь элементарные частицы? Что-то тут я не совсем тебя понимаю…

— В твоём непонимании виноват не я, — усмехнулся Сэнсэй, — а Бор.

— Бор? А кто это? — поинтересовался Руслан.

— Был такой датский физик, который в своё время, а точнее в 1912 году предложил решить проблему движения электронов вокруг ядра выделением для них так называемых стационарных орбит, двигаясь по которым электрон не утрачивает энергии.

— Ну, и чегось набедокурил сей мужик? — с неизменным чувством юмора спросил Женька.

А вот квантомеханическая теория строения атома, которая рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики, абсолютно не актуальна. На первый взгляд доводы немецкого физика Гейзенберга и австрийского физика Шрёдингера кажутся людям убедительными, но если всё это рассмотреть с другой точки зрения, то их выводы верны лишь отчасти, а в целом, так и вовсе оба не правы. Дело в том, что первый описал электрон, как частицу, а другой как волну. Кстати и принцип корпускулярно-волнового дуализма также неактуален, поскольку не раскрывает перехода частицы в волну и наоборот. То есть куцый какой-то получается у учёных господ. На самом деле всё очень просто. Вообще хочу сказать, что физика будущего очень проста и понятна. Главное дожить до этого будущего. А что касательно электрона, то он становится волной только в двух случаях. Первый — это когда утрачивается внешний заряд, то есть когда электрон не взаимодействует с другими материальными объектами, скажем с тем же атомом. Второй, в предосмическом состоянии, то есть когда снижается его внутренний потенциал.

— Кстати, о внутреннем потенциале, Сэнсэй, ты говорил, что его имеет любой материальный объект. А человек? — поинтересовался Николай Андреевич.

— А как же! Для человека это не просто энергия жизни, а определяющий фактор. Кто он, Человек или думающее животное?! Дело в том, что человек, в отличие от других материальных объектов, может менять свой внутренний потенциал с отрицательного (разрушительного) на положительный (созидательный).

— …А также управлять другими материальными объектами, — появился второй Сэнсэй. — К примеру, положительно заряженными частицами с отрицательным внутренним потенциалом мы довольно ловко и весьма охотно пользуемся. Кстати, может пора рассказать им, что это такое на самом деле, и как можно этим более эффективно пользоваться?

— Это ты за электричество что ли? — спросил третий Сэнсэй и, глянув на глуповато-удивлённые лица слушающих, с юмором изрёк: — Не думаю, что это их сильно заинтересует. Тем более что это ерунда по сравнению с тем, что они сейчас имеют возможность видеть меня в трёх экземплярах. Хотя на самом деле…

Источник

Что такое кванты

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Самый простой способ объяснить, что такое кванты – это (внезапно, да?) аналогия.

Возьмем расстояние между вашими глазами и монитором. Чисто математически это расстояние можно разделить на несколько отрезков. Сначала вполовину, потом еще на четыре, затем на восемь частей. И так, например, до бесконечности. И может показаться, что если вы захотите ткнуть пальцем в монитор, то не сможете это сделать, потому что это расстояние делится до бесконечности. Но вы знаете, что физически вы это сделаете без проблем, потому что, по-видимому, существует мельчайшая единица расстояния, меньше которой уже ничего нет.

Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн (последние скорее нет, чем да, но звучат круто). Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.

Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

А вот и фигушки. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы, простигосподи, вэб-программист, и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.

Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И неожиданно у них по тогдашним, казалось бы логичным, формулам умника Максвелла выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечности не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла дремучим лесом.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто по-студенчески подогнал результат под задачу, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Чем больше частота волны, тем больше энергии несет в себе один квант. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной вселенского масштаба.

Интересная аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Планк, к сожалению, сам не понял, что открыл – до конца жизни он был противник квантовой физики. Квантование энергии было вообще очень оскорбительным для классиков. Один известный ученый-шутник (Георгий Гамов, советский эмигрант, кстати) объяснял квантование энергии так: это все равно, что природа разрешила либо пить целый литр пива сразу, либо вообще не пить ничего, не допуская промежуточных доз. Ну или аналогия от нас: вы покупаете пиво только в бутылках (разной емкости), но никакого розливного пива! Так получается и с энергией.

Формула Планка для излучения абсолютно черного тела выдала адекватный результат без всяких бесконечностей. Потому что кусочки энергии в отличие от бесконечно малых величин можно подсчитать. После этого научный мир замер в нехорошем предчувствии.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики.

На картинке, походу, нарисован прибор для изучения фотоэффекта.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Никто не мог объяснить, кроме агента мировых заговорщиков Эйнштейна. Чтобы ответить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.

Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).

При фотоэффекте в силу размеров сражение между электроном и фотоном идет один на один. Чтобы фотон при столкновении с электроном вырвал последний из металлической пластинки, он должен иметь для этого достаточное количество энергии. А если применить формулу Планка именно для света, то выходило, что энергия каждого фотона пропорциональна частоте световой волны, то есть отдельно взятый фотон обладает определенной энергией, зависящей от собственной частоты. Вот и получалось, что частота света (его цвет) определяет скорость вылетающих электронов, а интенсивность (яркость) света влияет только на количество выбитых электронов.

Это как сотни детишек будут сбивать снежками сосульки, но никто не сможет докинуть, а потом придет переросток из старшей группы и метнет снежок до самой крыши и собьет цель.

Таким образом, Эйнштейн показал, что электромагнитная волна (свет) состоит из маленьких частиц – фотонов, которые в свою очередь представляют собой маленькие порции или кванты света.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.

Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау и прочие открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.

Благодарим за внимание! Продолжение следует.

Незаконное копирование текста преследуется, пресекается, ну, и сами знаете.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Наука | Научпоп

6.1K постов 69.2K подписчиков

Правила сообщества

ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.

Основные условия публикации

— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

— Видеоматериалы должны иметь описание.

— Названия должны отражать суть исследования.

— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.

Не принимаются к публикации

Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.

— Оскорбления, выраженные лично пользователю или категории пользователей.

— Попытки использовать сообщество для рекламы.

— Многократные попытки публикации материалов, не удовлетворяющих правилам.

— Нарушение правил сайта в целом.

Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.

благодаря вашему посту понял что такое квант в принципе) а про суперпозицию так же доходчиво объясните? и про парадокс наблюдателя или как оно там правильно называется когда квант ведет себя как частица или волна если за ним не «смотрят» это уже много лет напрочь выносит мне мозг;)

-Сколько стоит рюмка коньяка?

-Однако. А сколько стоит одна капля коньяка?

-Тогда накапайте мне рюмку.

И понял, и не понял.

В материальном мире получается, что энергия не делится бесконечно, потому что должен быть эталон самой маленькой частицы. Это понятно.

А геометрически, те есть не в материальном мире, а образно?
Я вот еще в школе задался вопросом (скорее философским по своей природе), когда декартову систему координат использовали. Вот, допустим, движение от единицы до нуля. Бесконечное множество точек, которые не имеют размера. Таким образом от единицы до нуля никогда не дойти (это не про Ахиллеса с черепахой?).

Ну а если точек бесконечное множество, то они не имеют определенного значения, а следовательно можно прийти к выводу, что и нуля не существует.

Квант Света или Энергии, Квант Пространства, Квант Времени и так далее.

Причем сам этот Квант тоже может состоять из Квантов, но уже ДРУГОГО КАЧЕСТВА.

весьма интересненько, спасибо)

Апория про Ахилесса ни в коей мере не доказывает неделимость пространства на бесконечно малые отрезки. Что-то Вы тут всё перепутали.

а у Вас нет еще такой же херни? я как увидел, сразу все тело зачесалось, руки задрожали и безумно захотелось посчитать на логарифмической линейке. блеать, надеюсь,это не ломка.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Отличная статья, спасибо.

Спасибо за рассказ. Интересно.

Получается что квант это не частица а скорее свойство энергии.

И размер кванта одного типа энергии будет отличаться от размера кванта другой энергии.

Автор, если мы состоим из квантов, означает ли это что мы тоже обладаем свойствами волны?

А пространство разве квантуется?!

Кванты это то, что я изучаю второй семестр. Это когда третий том Ландау становится твоим верным спутником. А книга Сербо настольной книгой. 🙁

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Разливное пиво, как помню, квантуется по 0,5 литра, так что под задачу о понимании понятия кванта тоже подходит. Правда, размер кванта сильно зависит от калибровки измерительной аппаратуры на стороне разливающего, но в целом картина примерно такова.

А где геометрически находится механизм, который нарезает энергию на кванты? В электронах? В структуре атома? Или зашит в само пространство и не дает выпустить в него неквантованные куски?

Мне стиль не понравился

Когда я учился в школе, корпускулярно-волновая теория света не была подтверждена. С тех пор что-то изменилось?

а можно в виде видео для ЛЛ?

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

бля, братан. про Планка интересно. штоб мне так Папирус (ето погоняло такое) в шуле так физику преподавал.

но про пиво как то неясно.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Квантовая теория поля: визуализация от ScienceClic

Как согласовать теорию относительности с квантовой механикой? Что такое спин? Откуда берётся электрический заряд?

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Физики представили квантовые системы в виде сферы

Ученые предложили количественный способ оценки степени нахождения системы в квантовом состоянии. Результаты исследования опубликованы в журнале AVS Quantum Science.

Известно, что более или менее крупные материальные объекты подчиняются классическим законам механики, сформулированным Ньютоном. Маленькие, такие как атомы и субатомные частицы, регулируются квантовой механикой, где объект может вести себя и как волна и как частица.

Для описания классических и квантовых состояний используется различный математический аппарат. При этом описание квантовой системы с помощью волновой функции возможно не всегда, а только для так называемых чистых состояний, когда состояние системы можно представить в виде линейной суперпозиции некоторых базисных состояний.

Помимо чистых состояний квантовомеханических систем существуют смешанные, которые описывают с помощью матрицы плотности. Кроме того, физики понимают, что должны быть и переходные состояния между классической и квантовой моделями, когда система частично «классическая», а частично «квантовая».

Исследователи во главе с Луисом Санчесом-Сото (Luis Sanchez Soto) из Мадридского университета Комплутенсе изучили экстремальные квантовые состояния, когда система проявляет наибольшую или наименьшую «квантовость», и разработали метод количественной оценки этого параметра.

Вместо численной шкалы квантовости авторы предложили для визуального представления экстремальных квантовых состояний так называемые созвездия Майораны, с помощью которых квантовая система может быть представлена математически точками на сфере.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Для наиболее квантовых состояний созвездия покрывают большую часть сферы.
Исследователи рассмотрели в своей работе несколько способов, которыми другие ученые оценивали степень квантовости и построили созвездия Майораны для каждого из них. Сравнив результаты, авторы сделали вывод, что их метод не только удобен, но и «невероятно красив».

Оценка степени квантовости систем имеет не только чисто теоретическое значение. Она важна в таких перспективных областях, как квантовые вычисления и квантовое зондирование.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Разгадан величайший парадокс квантовой механики

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Китайские ученые успешно проверили гипотезу, называемую квантовым дарвинизмом, которая объясняет трудноразрешимые противоречия между квантовой механикой и классической физикой, в том числе парадокс кота Шредингера. Исследователи протестировали одно из основных положений концепции, согласно которому одно из состояний квантовой системы многократно «отпечатывается» в окружающей среде, с которой эта система взаимодействует. Об этом сообщает издание Science Alert.

Для объяснения, как возникает классическая физика, исследователи предположили существование особенно устойчивых к декогеренции состояний, называемых состоянием указателя (pointer states). Конкретное местоположение частицы или ее скорость, значение ее спина или поляризация могут быть зафиксированы как устойчивое положение стрелки на измерительном устройстве. Иными словами, взаимодействие с окружением разрушает одни состояния, а другие оставляет, например, положение частицы. Это называется суперселекцией, индуцированной средой.

Согласно второму условию квантового дарвинизма, способность человека наблюдать какое-либо свойство зависит от того, насколько хорошо оно «отпечатано» в окружающей среде. Ученые подсчитали, что частица пыли в один микрометр за одну микросекунду «отпечатается» в фотонах около ста миллионов раз, что и обуславливает ее классические свойства. Разные наблюдатели видят пылинку в одном и том же месте благодаря «копированию» информации о наиболее устойчивом состоянии (в данном случае местоположении).

Ученые создали квантовую систему (фотон) в искусственной среде, состоящей всего из нескольких частиц (других фотонов). Согласно предсказанию квантового дарвинизма, наблюдая только за средой, можно получить всю информацию о классическом поведении частицы. Результаты проверки этого положения показали совместимость наблюдаемых свойств с теорией. Однако для доказательства последней необходимы дальнейшие исследования.

Декогеренцией называют процесс, когда квантовая система, которая находится в состоянии суперпозиции (ее альтернативные состояния наложены друг на друга), начинает проявлять классические свойства. Именно поэтому кот Шредингера, который, согласно мысленному эксперименту, является одновременно живым и мертвым, при открытии коробки оказывается лишь в одном из двух альтернативных состояний. Квантовая система запутывается с окружающей средой, взаимодействуя с огромным числом атомов, в результате чего ее состояния прекращают быть наложенными друг на друга. Если окружающая среда состоит из миллиарда атомов, то декогеренция происходит почти мгновенно, а кот не может быть одновременно живым и мертвым на отрезке времени, который поддается измерению.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Квантовая физика для самых маленьких

P.S. Долгое, но за то понятное видео о квантовой механике.
P.P.S. Самое то в 2 часа ночи.

Ох уж эта квантовая.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Честно стыпжено с просторов вк

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Так ли «пуст» вакуум как нам кажется?

Мы привыкли понимать слово «вакуум», как область пространства, где полностью отсутствует какая-либо материя, однако по-настоящему пустого пространства в нашей вселенной попросту не существует. А всё из-за одного наблюдения, который в 1927 году сделал немецкий физик Вернер Гейзенберг. Выраженное в математической формуле, данное наблюдение получило название «принцип неопределённости» или даже «принцип неопределённости Гейзенберга».

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

У квантовой механики есть несколько отцов-основателей, однако именно Вернер Гейзенберг получил Нобелевскую премию по физике с формулировкой «за создание квантовой механики. ».

Простыми словами, эта формула значит следующее: чем точнее мы будем знать положение квантового объекта в пространстве, тем меньше мы будем знать о моменте этой частицы и наоборот. Сам по себе, данный принцип является краеугольным камнем в фундаменте квантовой механики.

На сегодняшний день, единственной экспериментально-подтверждённой теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя), является квантовая теория поля (КТП). Согласно этой теории, пространство пронизано различными квантовыми полями, своё поле есть для каждой частицы. Различные энергии полей заставляют их колебаться и вибрировать с разной интенсивностью, и эти пики возбуждения и есть электроны, кварки, нейтрино, фотоны, глюоны и пр.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Поскольку поля являются квантовыми, это значит, что возбуждение поля может происходить не с какой угодно энергией, а лишь «порциями» или квантами – целочисленными множителями какого-то базового минимального уровня. Иными словами, уровни энергии можно представить определёнными ступенями, чем выше «ступенька», тем больше частиц находится в данном квантовом состоянии. Вся «математика» квантовой теории поля состоит из путешествий вверх и вниз по этим ступеням при помощи операций создания и аннигиляции, помогают в которых диаграммы, которые придумал американец Ричард Фейнман – по-своему легендарная фигура и не только в физике.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Пример – диаграмма аннигиляции электрон-позитронной пары, которая порождает фотон, который, в свою очередь, снова распадается на электрон-позитронную пару. Просто следим за стрелочками и смотрим, как происходит взаимодействие частиц.

Самый низкий энергетический уровень нашей «лесенки» не должен иметь никакой энергии, что означает, что в данном квантовом состоянии отсутствуют какие-либо частицы, это состояние вакуума. В идеальном вакууме, энергия всех полей всё время должна находиться в состоянии вакуума, но тут на сцену выходит принцип неопределённости Гейзенберга. Мы видели, что невозможно одномоментно зафиксировать положение и момент частицы, но у принципа неопределённости есть одно следствие – оотношению неопределённости подвержены не только момент и скорость, но и любые две сопряжённые переменные. В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Иными словами, соотношение неопределённости можно также применить и к энергии со временем, в той интерпретации, что Δ E – максимальная точность определения энергии квантовой системы, достижимая путём процесса измерения, длящегося время Δ t :

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Чем точнее мы будем стараться определить временной интервал, тем меньше определённой будет энергия квантового поля в заданном отрезке времени, квантовое поле будет размыто по всем энергетическим состояниям. В вакууме, наиболее вероятный уровень энергии – нулевой, но иногда поле будет содержать достаточно энергии, чтобы создать частицу, будто бы «из ничего». Такие частицы называются «виртуальными частицами». Квантовая теория поля рассматривает подобные виртуальные частицы как основу и связующее звено всех взаимодействий в нашей вселенной. Например, электромагнитное взаимодействие рассматривается как обмен виртуальными фотонами между двумя заряженными частицами.

Кто-то может возразить, что виртуальные частицы – лишь математический трюк, костыль, которым подпирают теорию (хотя надо отметить, что КТП делает предкрасные предсказания и описания явлений в своей области), но как же «поймать» виртуальную частицу, которая по определению существует между измерениями, живёт тогда, когда мы не смотрим?

Первые намёки на них мы получили в 1947 году Уиллисом Лэмбом и его аспирантом Робертом Ризерфордом (нет, не тем Резерфордом), которые заметили слабое различие между энергиями стационарных состояний ²S₁⸝₂ и ²P₁⸝₂ атома водорода. Позднее его назовут Лэмбовский сдвиг, а самому Лэмбу дадут Нобелевку, однако на то время по модели Бора, данные уровни должны были иметь идентичные уровни энергии. Данное открытие заставило учёных исследовать глубже данный феномен. Позднее американец немецкого происхождения Ханс Бете объяснил данный сдвиг флуктуациями энергии вакуума.

Виртуальные частицы и анти-частицы образовываются в пространстве между ядром и электронами, после чего ориентируются по силовым линиям электрического поля, что в какой-то степени загораживает электроны от положительного заряда ядра, что и влечёт за собой слегка разную энергию электрнов:

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Другим способом поохотиться на виртуальные частицы является обнаружение их общего влияния на вакуум. Если квантовые поля находятся в постоянном возмущении из-за непрерывного появления и аннигиляции виртуальных частиц, то «нулевая энергия» (энергия нулевого уровня) данных полей будет ненулевой и абсолютно пустой объём пространства будет иметь какое-то количество реальной энергии – энергии вакуума.

В 1948 году голландский физик Хендрик Казимир придумал замечательный способ обнаружить данную энергию. Он предложил расположить две проводящие пластины, расположенные очень близко друг к другу таким образом, чтобы между ними могли существовать фотоны только определённой частоты (возьмите гитарную струну определённой длины – она будет резонировать только на определённые звуковые частоты). Нерезонирующий фотон не сможет существовать между пластинами, что вызовет пропорциональное уменьшение энергии вакуума между пластинами, однако на внешней поверхности пластин могут существовать фотоны с любой энергией, в результате чего возникнет сила, сдавливающая пластины ближе друг к другу. Эффект Казимира был впервые успешно измерен лишь в 1984 году.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Вне зазора, сформированного пластинами, могут существовать частицы с любыми частотами. Между пластинами, возможны частицы лишь с определённым набором частот.

Ни эффект Казимира, ни сдвиг Лэмба не позволяют оценить количество энергии вакуума в абсолютном выражении. Данные эксперименты способны оценить лишь относительную разность уровней энергии между между разными состояниями, поэтому возникает вопрос, а сколько вообще энергии содержится в вакууме? На данный момент наука пока не знает ответа на этот вопрос. Одним из ответов может быть ускорение расширения вселенной – тёмная энергия может быть энергией вакуума.

Австралийским учёным из центра исследования субатомной структуры материи физического отделения университета Аделаиды под руководством Дерека Лайнвебера удалось создать компьютерную модель флуктуаций, происходящих в крохотном объёме пространства 2,4×2,4×3,8 фемтометра (1×10⁻¹⁵ метра). Анимация ниже построена при помощи данной модели. Уровень энергии закодирован в цвете, при этом самый низкий уровень энергии сделан прозрачным, так, чтобы мы могли видеть, что происходит внутри. Анимация смоделирована со скоростью 1×10²⁴ кадров в секунду.

кванта в музыке что это. Смотреть фото кванта в музыке что это. Смотреть картинку кванта в музыке что это. Картинка про кванта в музыке что это. Фото кванта в музыке что это

Анимация Центра исследований субатомной структуры материи физического отделения университета Аделаиды (Австралия)

Именно так выглядит пустое место или вакуум. В пустоте непрерывно происходят подобные флуктуации, потому что даже в самом разреженном вакууме межзвёздного или даже межгалактического пространства всё равно присутствует энергия. Это может показаться странным, но для создания истинного вакуума с минимально-возможным уровнем энергии, этой энергии придётся затратить гораздо больше. И даже если бы нам удалось создать подобный истинный вакуум, он бы оказался крайне нестабилен, словно гвоздь, сбалансированный вертикально на своём острие – малейшая помеха и энергия снова хлынет в него, возобновляя флуктуации.

P. S. Всех пикабушников с наступающим новым годом! В следующем посте будем разбираться с тем, кто такие кварки.

Теория относительности, квантовая механика и теория суперструн. Большие дрязги в семействе физических теорий.

Поскольку статьи на тему перечисленных теорий появляются тут стабильно, и стабильно запутывают мозги всем желающим приобщиться, решила прояснить пару моментов.

Пожалуй, лучше всё-таки начать с того места, откуда ноги растут. Да, с той самой большой Ж, в которой физики оказались в конце 19 века. Конкретно: великим умам от науки было банально нечего делать: все законы открыты, описаны, а то, что непонятно – новая область под названием «электродинамика», ну никак не вписывается в существующие уравнения. Не хочет электричество Максвелла дружить с Ньютоновской механикой.

В двух словах, основная фигня заключалась в том, что электромагнитные волны были волнами. Описывались как волны, вели себя как волны, распространялись как волны. Но привычным образом думая о волнах, физики тут же вспоминали про тот факт, что волны – колебания некоей среды. Например, звук – волны, распространяющиеся в воздухе и являющиеся движением воздуха. Морские волны – движение воды. Но что тогда является средой для электромагнитных волн? Что такое колеблется, что несёт через себя электромагнетизм? «Значит что-то, таки, есть!» удумали умнейшие и замутили эфир. То есть некую независимую от материи среду, в которой происходит распространение электромагнитных колебаний: света, радио и всего того привычного, что уже вошло в жизнь. Конечно же, теория теорией, но её надо же подтверждать: эфир стали искать. Тут наших мозговитых ждал серьёзный облом: никакого эфира обнаружить не удалось. Свет распространялся во все стороны с одинаковой скоростью, независимо от скорости наблюдателя, никакой анизотропности или внешнего воздействия на движущийся объект со стороны эфира не было.

Получалась странная лажа: вот мы вроде стоим на месте, меряем скорость света. Получаем результат. Бежим вперёд, опять мерям скорость света, который сами излучаем. Тот же результат. Стоим, меряем скорость света, который даёт фонарик бегущего человека… Снова те же цифры! Цимес оказался в том, что скорости не складываются! Традиционная механика не действует! Ньютон переворачивается в гробу, физики чешут репку и начинают усиленно думать. «Шозахерня?! – читается у них на лбах. – Если традиционные уравнения не работают, как же тогда нам описывать электромагнетизм??»

Тут после некоторых относительно недолгих поползновений в плане анализа максвелловских уравнений со стороны Лоренца и Пуанкарэ на сцене появляется всем известный тогда ещё неизвестный чувак с еврейской фамилией и именем Альберт. «Ребята, вы все лохи! Господа, мы подходим не с той стороны! Я всё придумал!», после чего начинает втирать вроде бы стрёмную дичь… однако народ следит за рассуждениями (или делает вид, что следит), впечатляется, а затем признаёт: наследник хитрого народа, таки, прав. Со своею теорией относительности.

В чём суть: Эйнштейн заметил одно из главных свойств уравнений Максвелла. Они справедливы для инерциальной системы отсчёта. Любой. Их вид не меняется. А что если системы разные? А пофиг, уравнения всё равно те же. И для стоящего человека и для бегущего с фонариком. Этот факт стал «первым постулатом» теории относительности.

Вторым постулатом стало то, что у взаимодействий существует максимальная скорость распространения. Магнитное поле распространяется не быстрее определённой скорости. Как и электрическое. Как и гравитационное. Вообще все воздействия осуществляются не быстрее определённого значения. Значения скорости света в вакууме (пока будем считать, что совпало).

Мужик, не долго думая, решил: «а почему нет?». Действительно, чисто математически мы ведь можем допустить подобные модели, так почему не попробовать? Но для этого надо изменить понимание самого подхода к анализу законов, проявляющихся в мире: никакого глобального пространства-времени не существует, каждый объект живёт в своей собственной системе отсчёта. Да, из одной системы можно перейти в другую, выполнив некоторые преобразования, но сути это не меняет. «Всё относительно» появилось именно на этом этапе: у каждого своя система отсчёта.

Победой такого подхода стало не объяснение «почему так происходит?» (на это вопрос теория относительности как раз не отвечает), а возможность самого описания процессов: как посчитать. Получилось нечто вроде «голографического» подхода к рассмотрению проблемы электромагнетизма: если мы знаем, как работает обычный патефон и какой звук получается на выходе, то с mp3 плеером можно допустить примерно то же описание процесса воспроизведения звука. Хотя бы отчасти. И результат (звук) будет такой же.

Впрочем, теория относительности (общая и специальная) позволила, развив собственные математические модели, заглянуть в некоторые аспекты взаимодействия материи и успешно спрогнозировать многие явления. Но, как говорится, главный косяк остался. А именно: квантовая механика.

Ещё раз: в теории относительности пространство-время это что-то вроде резинового листа, который сам по себе взаимодействует с веществом, искажая свою геометрию. Чисто подход к рассмотрению такой. В квантовой механике пространство-время – контейнер для частиц, не более. Ни с чем не взаимодействует. Справедливые результаты выдают обе теории. Одна на больших масштабах, другая – на малых.

И как, падшая женщина, всё это совместить?

Вот тут-то и появилась теория струн. Не сама по себе, конечно, и не так сразу, но… В 1968 году физики вдруг заметили, что свойства частиц, участвующих в сильном взаимодействии отлично описываются математической функцией Эйлера, которая применялась для описания колебаний гитарных струн. «Аааа, так вот в чём было всё дело-то!!» воскликнули мозговитые и кинулись, для начала, перепроверять результаты. Представьте себе, результаты были те же.

По всему выходило, что движущаяся частица (а какая у нас частица не движется?) – это и не частица вовсе, а колебание, передающееся по некоей одномерной струне. С переносом энергии, конечно. Выглядит как гребень волны на воде: вот он гребень, но по сути это волна на поверхности жидкости, которая хоть и переносит энергию, но не саму жидкость.

По результатам дальнейшего автомозгоклюйства, математическая модель струнной теории оказалась согласуемой с реальностью, если построить её не на 4 измерениях (3-пространство + время), а на 11. В итоге оказался математический монстр. Огромный, не до конца описанный и не понятно как к нему подступиться. Но, как ни странно, способный объединить все существующие в природе взаимодействия в единую систему и окончательно подружить теорию относительности с квантовой механикой. Монстрика назвали М-теорией, а на выяснение конкретного количества зубов во всех труднодоступных местах пока положили болт. Ну действительно, надо ставить такие эксперименты, что всей вселенной не хватит.

Отдельно от себя лично отмечу вот что. Основной особенностью, объединяющей теорию относительности и М-теорию, является подход к рассмотрению. И там и там опора идёт прежде всего на математику с допущениями типа «а почему бы и нет». Анализ абстрактных моделей, затем попытка подтвердить на практике (что чаще всего невозможно для м-теории). То, что «круглое оранжевое и пахнет как мандарин» не всегда является мандарином, нашим учёным ещё только предстоит понять. При попытке самостоятельных разбирательств в обеих теориях всегда следует помнить, что они описывают поведение объекта по принципу «выглядит так, как будто… » и дальше модель. Действительность сложнее.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *