квантовая физика и квантовая механика чем отличаются

Почему квантовая физика сродни магии?

Квантовая механика изучает наш мир на самом глубинном уровне, так как все, что нас окружает состоит из атомов. Даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Так почему же этот раздел физики так сильно похож на магию?

Что вы знаете о квантовой физике? Даже гуманитарию вроде меня понятно, что физика и квантовая физика изучают немного разные вещи. При этом физика в целом – это наука о природе, которая изучает то, как устроен мир и как все объекты и тела взаимодействуют друг с другом. Будучи разделом физики, квантовая механика изучает наш мир на самом глубинном уровне. Дело в том, что все, что нас окружает состоит из атомов. Да что там, даже мы с вами – это ни что иное как ансамбль из атомов, которые зародились в ядрах сверхновых звезд. Более того, эта область физики настолько сложная, что многие ученые признают, что плохо ее понимают. Учитывая растущее количество вопросов, на которых сегодня нет ответов и некую схожесть квантовой физики с магией, она невероятно привлекательна, но может ввести в заблуждение, как это успешно делают многие шарлатаны и лжеученые. В этой статье мы попытаемся понять что такое квантовая физика и почему она так похожа на волшебство.

Фотон – это элементарная частица, которая не имеет массы и может существовать в вакууме, передвигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Почему квантовая физика такая сложная?

Все мы любим фокусы. Особенно те, во время которых фокусник может заставить шары “прыгать” между перевернутыми чашками. В квантовых системах, где свойства объекта, включая его местоположение, могут варьироваться в зависимости от того, как вы за ним наблюдаете, такие подвиги должны быть возможны без ловкости рук. Дело в том, что согласно квантовой теории, элементарная частица обретает определенное состояние лишь в момент наблюдения. В это сложно поверить, но в итоге ученым удалось экспериментально доказать, используя один-единственный фотон, что он существует в трех местах одновременно. Но как такое возможно?

Один из самых знаменитых квантовых экспериментов это двухщелевой эксперимент, который показал, что свет и материя могут вести себя как частица и волна одновременно.

Необходимо отметить, что успехами квантовой механики – с помощью которой можно точно описать поведение атомов и элементарных частиц – интересовался Альберт Эйнштейн. Однако гениальный ученый выступал против этой теории и высмеивал понятие, которое лежит в ее основе – запутанность. В квантовой механике запутанность означает, что свойства одной частицы могут немедленно влиять на свойства другой, независимо от расстояния между ними.

Впоследствии, серия тщательно разработанных экспериментов показала, что Эйнштейн ошибался: запутанность реальна и никакие другие теории не могут объяснить ее странные эффекты. И все же, несмотря на способность квантовой теории объяснять результаты экспериментальным путем, многие ученые признают, что квантовая физика настолько сложная, что познать ее едва ли удастся.

Как работает квантовая физика

Согласитесь, все это как минимум странно и заставляет мозг буквально трещать по швам. Ведь получается, что присутствие наблюдателя определяет судьбу системы и заставляет ее сделать выбор в пользу одного состояния. Но разве это не вмешательство сознания в материальную реальность? А если учесть, что фотон света может одновременно быть и частицей и волной и находиться сразу в трех местах, то в каком мире мы вообще живем? Является ли это доказательством существования параллельных реальностей с одинаковыми законами физики?

И это лишь часть вопросов, на которые у современной физики нет ответов. Пока. Однако все неизвестное издревле пугало человека. Иногда люди готовы поверить во что угодно, лишь бы был хотя бы один – и уже не важно какой – ответ. По этой причине совершенно неудивительно, что всякого рода шарлатаны и лжеученые так любят квантовую физику. Если ради интереса включить РЕН ТВ, то можно наткнуться на одну из передач о потустороннем мире, в котором, в роли эксперта, выступает очередной лжеученый. В 99 случаях из 100, его ложное объяснение мироустройства будет включать в себя хотя бы одно упоминание квантовой физики. При этом любой лжеученый резво бравирует такими научными терминами как электрон, фотон и запутанность, чтобы в глазах неискушенного зрителя обрести более-менее достоверный вид.

Иногда мне даже кажется, что любой уважающий себя шарлатан просто обязан иметь в своем репертуаре спич о тайнах квантовой физики. Ведь ученым практически нечего возразить их утверждениям о том, что квантовая механика – загадка для ученых. Правда удобно? Результатом популяризации таких идей может стать ложное представление о мире для большого количества людей. Подобные идеи также способствуют склонности к альтернативной медицине и лечения опасных заболеваний наложением рук. Так, с экранов телевизоров эзотерики с пеной у рта доказывают, что мысль материальна потому что квантовая физика вот, а доморощенные биологи приплетают квантовую физику в свои необоснованные идеи о волновом геноме и.т.д. Все это способствует и росту мифов и заблуждений о мире, в котором мы живем.

Что такое квантовая физика простыми словами

Между тем, квантовая физика – это самая настоящая магия. Магия реальности. Да, мы много не понимаем и не знаем ответов на вопросы, которые порождает квантовая запутанность и результаты многочисленных экспериментов, в том числе и знаменитый мысленный эксперимент кота Шредингера. При этом реальность намного интереснее вымысла, ведь мы столького о ней не знаем: наша Вселенная на 95% состоит из таинственной темной материи, а еще есть темная энергия, которая отвественна за ускорение расширения Вселенной. Более того, на самом глубинном уровне наш мир состоит из мельчайших частиц, которые могут находиться в нескольких местах одновременно и ведут себя по-разному в зависимости от того, наблюдаем мы за ними или нет. Если это не магия реальности, то что есть реальность?.

В то же самое время наука уже дала множество ответов на важнейшие вопросы о нашем мире. Так или иначе, я думаю что нет ничего плохого в том, чтобы не знать чего-то и не понимать квантовую физику. Главное – это наша познавать Вселенную. Которая, скорее всего, тоже познает себя через нас.

Источник

Разница между квантовой физикой и квантовой механикой

Содержание:

Что такое квантовая физика?

Что такое квантовая механика?

Квантовая механика родилась, когда Макс Планк ввел понятие квантованной энергии (E = nhf) для объяснения теплового излучения абсолютно черного тела. Затем Эйнштейн придумал понятие «фотон», чтобы объяснить частичную природу света. Это привело к теории, известной как «дуальность волна-частица», которая описывает обладание как «волновыми», так и «частицовыми» качествами материи и энергии. Луи де Бройль представил эту концепцию.

Фундаментальные концепции квантовой механики также включают модели Бора для описания атомной структуры по Нильсу Бору, уравнение Шредингера (широко используемое уравнение для расчета квантовых волн) Эрвина Шредингера, принцип неопределенности (который объясняет вероятностную природу материи и энергии) Вернера Гейзенберга и Принцип исключения Паули Вольфганга Паули. Объяснение, известное как копенгагенская интерпретация, и явление, известное как квантовая запутанность, также относятся к квантовой механике.

В чем разница между квантовой физикой и квантовой механикой?

Кроме того, квантовая физика может предсказывать и описывать свойства физической системы, в то время как квантовая механика может описывать свойства молекул, атомов и субатомных частиц, касающиеся взаимодействий между ними и с электромагнитным излучением. Следовательно, в этом разница между квантовой физикой и квантовой механикой с точки зрения их использования.

Источник

Разница между Классической механикой и Квантовой механикой

Ключевое различие между Классической механикой и Квантовой механикой заключается в том, что Классическая механика описывает природу макроскопического уровня, тогда как квантовая механика описывает природу микроскопического уровня.

Классическая механика и квантовая механика являются очень важными разделами в физике, поскольку они используются для описания поведения любых объектов. Р азница между классической механикой и квантовой механикой, заключается в предсказуемости событий, а также в самих рассматриваемых предметах, то есть классическая механика применяется для макроскопических объектов, тогда как квантовая механика описывает поведение микроскопических частиц.

Содержание

Что такое классическая механика?

Классическая механика — это теория, описывающая движение макроскопического объекта. Тип макроскопического объекта может варьироваться от снарядов до астрономических объектов, таких как космические корабли. События и движения предсказуемы согласно классической механики. Это означает, что если мы знаем начальное положение объекта, то мы можем предсказать его положение в будущем или определить, каким было его положение в прошлом зная конечное положение. Д ругими словами, мы можем предсказать, как объект будет двигаться и как он перемещался в прошлом.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаютсяАнализ движения снаряда

Как правило, классическая механика дает чрезвычайно точные результаты для крупных объектов. Однако эта теория не работает для чрезвычайно массивных объектов и объектов, движущихся со скоростью света.

Что такое Квантовая механика?

Квантовая механика — это теория, которая описывает природу объектов на атомном уровне. Согласно квантовой механики, энергия, импульс и угловой момент являются дискретными значениями, также это называется «квантованием». Здесь объекты рассматриваются с точки зрения волновой природы, а так же как объекты, состоящие из элементарных частиц. Иногда это единственная теория, которая может описать поведение субатомных частиц — электронов и протонов.

Кроме того, эта теория важна для определения того, как атомы связываются друг с другом посредством ковалентной связи. О бласти, в которых применяется квантовая механика, включают электронику, криптографию, квантовые вычисления и другие.

В чем разница между Классической механикой и Квантовой механикой?

Классическая механика — это теория, которая описывает движение макроскопического объекта, в то время как квантовая механика — это теория, которая описывает природу объектов на атомном уровне. Следовательно, ключевое различие между классической механикой и квантовой механикой заключается в том, что классическая механика описывает природу макроскопического уровня, тогда как квантовая механика описывает природу микроскопического уровня. Кроме того, классическая механика не описывает корпускулярно-волновой дуализм, а квантовая механика его описывает.

Еще одно различие между классической и квантовой механикой состоит в том, что будущие события предсказуемы, если мы используем классическую механику, но, согласно квантовой механике, события непредсказуемы.

Заключение — Классическая механика против Квантовой механики

Классическая механика и квантовая механика являются важными теориями в физике. Ключевое различие между классической механикой и квантовой механикой заключается в том, что классическая механика описывает природу макроскопического уровня, тогда как квантовая механика описывает природу микроскопического уровня.

Источник

Квантовая физика для начинающих

Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.

Хотите понять квантовую физику? Не пытайтесь ассоциировать эту науку с классической физикой. Тогда вы сможете взглянуть на мир иначе.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

Квантовая гипотеза Планка

Днём рождения квантовой физики считается 14 декабря 1900 года, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым им излучением. Он гласил: энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами. Формула энергии кванта:

где e — энергия излучения, n — частота излучения, h — постоянная Планка.

Это предположение показывало, что законы классической физики неприменимы к микромиру.

Эйнштейн и фотоэлектрический эффект

В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка.

Фотоэлектрический эффект — явление вылета электрона из твёрдых и жидких тел под воздействием электромагнитного излучения.

Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества. При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаютсягде h — постоянная Планка, n — частота электромагнитного излучения, A — работа выхода, mv^2/2— кинетическая энергия вышедшего электрона.

Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:

Благодаря явлению внешнего фотоэффекта мы смотрим фильмы со звуком. Фотоэлемент позволял превратить звук, запечатлённый на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, преобразовывался и попадал на фотоэлемент. Чем больше света проходило через дорожку, тем громче был звук в динамике.

Не начинайте изучение квантовой физики со сложных математических формул. Улавливайте суть законов и экспериментов.

Формирование квантовой механики

Матричная механика Гейзенберга

В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.

Квантовая механика — раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.

Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название — матричная механика. Теория объясняла, как происходят квантовые скачки.

Квантовый скачок — переход квантовой системы (в частности атома) с одного энергетического уровня на другой.

Подход Гейзенберга включал два компонента:

Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.

Волновая механика Шрёдингера

Совершенно другой подход предложил Эрвин Шрёдингер, назвав теорию волновой механикой. Он предположил, что любая материя существует в виде волн.

Волновое уравнение, сформулированное Шрёдингером, относится к ненаблюдаемой величине. Квадрат модуля этой величины показывает распределение вероятности обнаружить частицу в различных точках пространства, то есть отдельная частица представляется как волна, распределённая по всему пространству. Из его метода описание материи стало статистическим, то есть вероятностным.

Позже Поль Дирак доказал, что теории двух учёных были разными представлениями одного и того же и равноценными. Эти два подхода сформировали квантовую механику.

Однако Гейзенберг и Шрёдингер известны другими открытиями.

Помните: в квантовой физике и её разделах всё неопределённо и вероятностно.

Основные законы квантовой механики

Принцип неопределённости Гейзенберга — где и с какой скоростью?

В 1927 году Гейзенберг сформулировал принцип неопределённости: невозможно одновременно точно измерить пространственную координату и скорость частицы. Формула:

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаютсягде Δx— неопределённость координаты пространства, Δv — неопределённость скорости частицы, h — Постоянная Планка, m — масса частицы.

Принцип неопределённости также связывает иные пары характеристик, например, энергию квантовой системы и момент времени, когда квантовая система обладает ей.

Подходящей аналогией является фотографирование движущегося объекта. Объект, сфотографированный с длительной экспозицией, размывается. Это демонстрирует, как движется объект, но не где он находится. Наоборот: можно определить местоположение объекта, сфотографированного с короткой экспозицией, но не то, как он движется. Однако следует понимать, что принцип неопределённости не ориентирован на наблюдателя, а показывает природу частиц.

Кот Шрёдингера — и жив и мёртв одновременно

Шрёдингер, желая показать неполноту квантовой механики при переходе от микромира к макромиру, провёл мысленный эксперимент.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаютсяКот Шрёдингера — и жив и мёртв одновременно

Статья дает научный ответ на вопрос, безгранична ли Вселенная и как это доказать.

Интерпретации квантовой механики

У квантовой механики существуют две интерпретации:

Различность этих подходов демонстрирует квантовое бессмертие, которое можно считать пересказом эксперимента Шрёдингера от лица кота. Вместо кота — участник, вместо колбы с ядом — ружьё, которое стреляет, если радиоактивный распад произойдёт (вероятность по-прежнему 50/50).

Квантовая физика — FAQ

Это были основы квантовой физики, которые необходимо знать для базового понимания. Однако осталось несколько интересных вопросов:

Квант — наименьшая неделимая порция чего-либо, в частности энергии. Понятие кванта ввёл Макс Планк.

Квантовый компьютер — вычислительное устройство, использующее явления квантовой суперпозиции и квантовой запутанности для передачи и обработки информации. И он существует. Наибольший составлен из семи кубитов. Этого хватит, чтобы разложить число 14 на простые множители: 7 и 2. Пока что нет квантового компьютера для практического применения, однако его появление поможет человечеству решить медицинские проблемы, расшифровать генетический код и выйти за рамки материального мира. Поэтому многие страны финансируют десятки миллионов долларов на создание квантового компьютера.

Пока что о квантовой криптографии говорят в будущем времени. Однако первый протокол был создан в 1984 году и носил название BB84. Замысел квантового шифрования состоит в том, чтобы передавать информацию отдельными фотонами. Главным теоретическим недостатком квантового шифрования является низкая пропускная способность.

Если выбрать одну частицу из определённого количества частиц и повлиять на неё, то состояние изменится у остальных частиц, независимо от условий. Явление квантовой запутанности — основа квантовой телепортации.

Свойство некоторых металлов при охлаждении до абсолютного нуля полностью терять сопротивление электрическому току.

Свет не является ни частицей, ни волной, приобретая их свойства только в некотором приближении.

Квантовый двигатель — механизм, который выполняет работу без потерь энергии, сил трения и теплообмена с окружающей средой.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

Эффект наблюдателя — теория о том, что наблюдение за объектом изменяет его свойства.

В квантовых полях процесс передачи взаимодействия происходит квантами, в качестве которых выступают элементарные частицы с фиксированными физическими характеристиками. Таким образом, взаимодействующие частицы имеют квантованные характеристики и взаимодействие между ними передаётся квантовым полем со своими квантованными характеристиками.

Квантовый камуфляж сделан из оксида самария и никеля и позволяет спрятаться от инфракрасных камер.

Книги о квантовой физике

Если вы хотите и дальше познавать квантовый мир, рекомендуем следующие книги:

Источник

Как квантовая физика изменила наш мир: от измерения кубитов до алгоритма Шора

Телепортация, путешествие во времени или в параллельные миры — все это следствия появления такой науки, как квантовая физика. Но если телепортация для людей пока возможна лишь в теории, то реальные кейсы, где применяются квантовые вычисления, уже существуют. Ильназ Маннапов, младший научный сотрудник научно-исследовательской лаборатории «Квантовые методы обработки данных» (КФУ), выступил на фестивале науки и технологии «ПРОСТО», организованном российским ИТ-вузом, и рассказал о влиянии квантовых вычислений и физики на человеческое мировоззрение.

Читайте «Хайтек» в

Почему квантовая физика должна испугать

«Если квантовая физика вас не испугала, значит, вы ее не поняли», — как-то сказал один из создателей квантовой физики Нильс Бор. Многие из нас знают про такие явления, как телепортация, путешествие в параллельные миры или в будущее. Но не все знают, что данные явления являются следствиями такой науки, как квантовая физика.

В конце XX века многие исследователи поняли, что квантовую физику можно использовать при создании нового вида компьютеров. Можно сказать, что исследователи, которые занимаются вопросами квантовых вычислений, готовят теоретическую основу для телепортаций, путешествий во времени либо в параллельные миры.

В контексте классических вычислений есть такое понятие, как 1 бит — это единица представления или хранения информации. Аналогично классическому биту можно определить квантовый бит, который является единицей квантовой информации. Один классический бит может в себе хранить каждый момент времени одно из двух состояний: либо ноль, либо единицу. С физической точки зрения — это наличие или отсутствие электрического сигнала. Как и в классическом случае, в квантовом есть состояния — 0 и 1. Но, в отличие от классических вычислений, 1 кубит может хранить в себе суперпозицию этих состояний. То есть состояние квантового бита в общем случае определяется двумя характеристиками, или двумя параметрами. Первый параметр отвечает за вероятность нулевого состояния, а второй — за вероятность первого состоянии. Квантовый бит в некотором роде — некое вероятностное состояние, однако из него можно извлечь классическую информацию. Для этого используется специальная операция под названием измерение.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

Базисные состояния в квантовом случае не являются единственными возможными состояниями. Также есть состояние, к примеру, плюс-минус, и нужно отметить, что базисное состояние зависит от физической реализации квантового бита.

Квантовые вычисления и их отличия от классических

Любые классические вычисления основываются на некоторых классических преобразованиях. То есть это некие действия, которые мы можем предпринимать с классическим видом. К примеру, оператор НЕ инвертирует значение классического бита. То есть если на входе мы получаем 0, то на выходе получаем 1, и наоборот. Для работы с квантовым битом используются квантовые преобразования. Есть одно отличие, которое обособляет квантовые преобразования от классических. Квантовые преобразования являются обратимыми. Действие любого из них можно обратить с помощью некоторого другого также квантового преобразования. И, в отличие от классических вычислений, для квантовых можно определить еще одну операцию под названием «измерение». С помощью этого преобразования мы можем извлекать классическую информацию из квантового бита.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

Работу квантового компьютера можно определить с помощью, соответственно, квантовой схемы. Если классическая схема состоит из классических преобразований, то квантовая схема — из квантовых.

Квантовые вычисления, в отличие от классических, являются молодой наукой, но уже есть интересные примеры их применения. К примеру, такая область, как криптография — защита информации, задачи оптимизации хорошо решаются с помощью квантовых компьютеров. При создании реального сопоставимого с классическими компьютерами квантового вычислителя мы сможем решить некоторые задачи быстрее, чем классические компьютеры.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

Идея сверхплотного кодирования заключается в том, чтобы с помощью одного квантового бита передавать два классических бита. Почему же такое кодирование называется сверхплотным? Вспомним черную дыру — это некое физическое тело, вся масса которого схлопывается в одну точку сингулярности. Однако в квантовом случае все намного прозаичнее, речь идет про сжатие данных, причем даже не столь внушительное — просто передача с помощью одного кубита двух классических битов.

Два кубита называются запутанными, если, измеряя или извлекая классическую информацию из первого кубита, мы можем с точностью определить состояние второго кубита. Простой пример: допустим, есть брат и сестра Боб и Алиса. Ежедневно на завтрак или на обед мама им подготавливает контейнер с едой. Она либо кладет салат, либо бутерброд с сыром. При этом ни Алиса, ни Боб, уходя в школу, не знают содержимое контейнера. И только приходя в школу, они открывают свои контейнеры: Алиса видит салат, и уже точно знает, что в контейнере у Боба. Другой более интересный пример — это пара носков. Допустим, вы проснулись утром и хотите надеть носки, надевая один из носков на правую ногу, вы точно будете знать, что второй носок принадлежит левой ноге или будет левым носком. Сверхплотное кодирование как раз-таки основано на явлении запутанности.

Телепортация — физическое перемещение объектов из одного места в другое за короткий промежуток времени. Такое явление придумано в квантовых вычислениях, а в квантовой физике экспериментально продемонстрировано. Однако в данном случае мы перемещаем не все физическое тело, а всего лишь состояние одного кубита. Можно отметить, что дело уже осталось за малым, теперь нужно научиться расщеплять физические тела на элементарные частицы, а далее после передачи с помощью квантового канала связи обратно собирать из них физические тела. Данное явление также основано на явлении запутанности.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

«Допустим, есть советский шпион…»

Следующий пример — это протокол BB84, который относится к области криптографии. Предположим, у нас есть некий советский шпион, цель которого — обмениваться информацией с генеральным штабом. Есть несколько вариантов решения данной задачи. Один из вариантов — использование ключа, с помощью которого шпион мог бы шифровать сообщение, а принимающая сторона — расшифровывать. Есть две проблемы: как получить данный ключ, чтобы никто не смог его подделать, и, во-вторых, как обменяться ключом таким образом, чтобы никто не смог его перехватить. Протокол BB84 решает данную проблему.

квантовая физика и квантовая механика чем отличаются. Смотреть фото квантовая физика и квантовая механика чем отличаются. Смотреть картинку квантовая физика и квантовая механика чем отличаются. Картинка про квантовая физика и квантовая механика чем отличаются. Фото квантовая физика и квантовая механика чем отличаются

В начале шпион имеет некий генератор случайных битов и с его помощью генерирует случайные биты. В качестве квантового бита он использует одиночные фотоны. С их помощью он шифрует или сохраняет классическую информацию в одиночный фотон, назовем его просто кубитом. В данном случае при записи классического бита в кубит может быть использовано два вида базисов. В качестве базисов используются различные поляризации одиночного фотона. Для упрощения действия назовем эти базисы белым и желтым базисом. Что это значит: с помощью белого и желтого мы можем шифровать как значение 0, так и значение 1. Если мы используем желтый базис, то поляризация фотона — диагональная, и она будет хранить значение 0; если на вход мы получаем 1, то используется антидиагональная поляризация, и, следовательно, с помощью нее передаем 1. Если используется белый базис, то с помощью горизонтальной поляризации передается состояние 0, а с помощью вертикальной — 1. Шпион выбирает произвольно эти базисы: ни он, ни кто-нибудь другой не знает, какой именно он выберет. Полученные фотоны с определенной поляризацией передаются в генеральный штаб, который также обладает этими базисами: с их помощью там производят измерение полученного квантового бита. В генштабе не знают, какие именно базисы использовал советский шпион, следовательно, там произвольно выбирают эти базисы. Но, с точки зрения теории вероятностей, в половине случаев они угадают эти базисы. И, следовательно, где-то в половине случаев из всех у них будут совпадать использованные базисы — и полученные и переданные классические биты. Далее генеральный штаб передает те базисы, которые он использовал, а шпион, в свою очередь, сообщает, в каких именно позициях произошло совпадение. Строка, которая была получена из выжатых состояний, и становится ключом. То есть если шпион отправляет 1 000 бит классической информации, то в итоге ключ будет составлять порядка 500 символов, или 500 бит.

Есть третий человек, условный Мюллер, цель которого — подслушать процесс обмена ключом. Как это он делает? Допустим, он тоже знает все те базисы, которые используются шпионом и генштабом. Он становится посередине и начинает принимать одиночные кубиты с помощью своих базисов. Он тоже не знает, какие именно базисы использовал советский шпион, произвольно выбирает между желтым и белым базисом. В 50% случаев он угадает. Следовательно, 50% кубитов уйдут в том же состоянии, в котором и были получены. Однако порядка 50% уйдут уже в измененном состоянии. Как результат, генеральный штаб при получении этих кубитов только в четверти случаев будет получать именно те состояния, которые были отправлены, в принципе, это и будет сигналом того, что их кто-то подслушивает. Если бы их никто не подслушивал, то 50% их ключей бы совпадали. Однако если кто-то будет их подслушивать, только в четверти случаев ключи будут совпадать. Следовательно, первая проблема, которую мы с вами озвучивали, — о том, что как именно сгенерировать ключ, чтобы никто не подслушивал, таким образом и решится. Как только они узнают, что их кто-то подслушивает, то могут поменять канал связи. То есть выбрать уже другой квантовый канал. Вторая проблема: как именно обменяться ключом, чтобы никто не смог перехватить, в данном случае решается сама собой, так как никакой проблемы обмена ключом в данном случае не существует.

Когда появятся реальные квантовые компьютеры

На данный момент квантовые компьютеры уже есть и даже промышленно практически используются. На самом деле это компьютеры, которые в какой-то мере используют квантовые эффекты. Данные вычислители решают ограниченный круг задач и в основном используются для решения некоторых оптимизационных задач. К примеру, компания d-wave — один из разработчиков почти квантовых компьютеров. Среди клиентов данной компании можно назвать таких гигантов, как Google, несколько автоконцернов также используют почти квантовые компьютеры.

На сегодняшний день уже известно несколько разработок, которые ведутся в создании реальных квантовых компьютеров. Буквально год назад была разработана экспериментальная модель квантового компьютера, который работает с двумя кубитами. Для решения реальных задач данные квантовые компьютеры тоже не подходят, однако важно отметить, что их работа хорошо демонстрирует работу тех принципов, на которых теоретически основываются квантовые вычислители.

В 2019 году был представлен квантовый компьютер, состоящий и работающий с 20 кубитами. Данный компьютер используется чисто для демонстрации того, что принципы квантовых вычислений работают. Это можно сравнить с двумя мегабайтами, к примеру, оперативки в современном мире, то есть, в принципе, это ни о чем.

Сейчас высказываются гипотезы, что квантовая запутанность и явление кротовых нор — одно и то же явление. Более того, кротовые норы сами по себе основаны на таком явлении, как квантовая запутанность. Это говорит о том, что в будущем, как вариант, можно будет создавать кротовые норы уже искусственным путем. То есть запутывая некие квантовые биты между собой.

Как измерить квантовый бит

Существует три взгляда на измерение квантового бита. Первый взгляд — это копенгагенская теория, классический взгляд на процесс измерения. Она гласит, что с помощью измерения мы, получая некий классический результат, влияем на измеряемый кубит. Если рассматривать в контексте электрона, то измерение электрона представляется в виде некой волны — то есть это некая волновая функция. Но измерение приводит к тому, что данная волновая функция схлопывается, и мы имеем дело уже с частицей. Важно упомянуть про неопределенность Гейзенберга, которая гласит: что мы не можем знать про волновую функцию и местоположение электрона одновременно. То есть если мы будем измерять электрон, то потеряем характеристики волновой функции. И наоборот, зная характеристики волновой функции, мы не можем определить местоположение электрона.

Второй взгляд — это теория Дэвида Бома, которая гласит, что мы просто владеем не всей информации о системе, а в реальности и до измерения, и после измерения волновая функция никуда не девается. Просто есть некие скрытые параметры, которых мы не знаем. И зная эти дополнительные характеристики, мы можем установить как точное местоположение электрона, так и характеристики волновых функций. Это можно сравнить с подбросом обычной монеты. Если рассматривать с классической точки зрения, подброс монеты считается процессом рандомным, то есть результат нельзя предсказать. Однако, с точки зрения физики, мы можем с точностью определить, зная некоторые дополнительные характеристики, какой именно стороной упадет монета. К примеру, начальную силу удара либо силу сопротивления воздуха и так далее.

И третий взгляд на процесс измерения — это теория множественных миров. Данную теорию высказал Хью Эверетт. Она гласит, что при измерении происходит некое расщепление физического мира. И та ипостась, которую мы наблюдаем, местоположение электрона, реальна только в нашем мире. Параллельно создаются другие миры, в которых реальна уже другая ипостась электрона. Развивая теорию Эверетта, один из создателей квантовых вычислений в своё время сказал, что, таким образом, сама Вселенная является неким квантовым компьютером и производит вычисления.

Причиной появления постквантовой криптографии стал был теоретический квантовый алгоритм, позволяющий взломать существующие системы шифрования. Одна из них является основой безопасности многих интернет-банкингов, а также основой шифрования веб-сайтов. Предположим, есть советский шпион, цель которого — передавать информацию в генштаб, а есть третья сторона, которая может это все подслушивать. До этого мы рассматривали шифрование с помощью одного ключа, но в данном конкретном случае предлагается другой метод. Есть протокол RSA, цель которого следующая: генерируется два ключа — открытый ключ и закрытый; с помощью закрытого ключа производится расшифровывание полученного сообщения, а с помощью открытого — шифрование. Данный протокол позволяет реализовывать данный алгоритм, то есть создавать открытый и закрытый ключи.

В конце XX века Питером Шором был предложен новый алгоритм, позволяющий взломать основу алгоритма RSA. Данный алгоритм является полностью квантовым, и, следовательно, возникновение реально работающего квантового компьютера позволит взломать современные системы защиты. Как результат возникла новая наука, которая рассматривает новые алгоритмы, чтобы сделать устойчивые методы шифрования к взлому квантовым компьютером.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *