квантовая связь что это такое простыми словами
Квантовая связь: перспективы
(с) New quantum dot could make quantum communications possible
Телеграф «убил» голубиную почту. Радио вытеснило проводной телеграф. Радио, конечно, никуда не исчезло, но появились другие технологии передачи данных – проводные и беспроводные. Поколения стандартов связи сменяют друг друга очень быстро: 10 лет назад мобильный интернет был роскошью, а теперь мы ждем появления 5G. В скором будущем нам понадобятся принципиально новые технологии, которые будут превосходить современные не меньше, чем радиотелеграф — голубей.
Что это может быть и как оно повлияет на всю мобильную связь — под катом.
Виртуальная реальность, обмен данными в умном городе с помощью интернета вещей, получение информации со спутников и из поселений, расположенных на других планетах Солнечной системы, и защита всего этого потока — такие задачи нельзя решить одним только новым стандартом связи.
Квантовая запутанность
(с) New Experiment Allow Us To “See” Quantum Entanglement With The Naked Eye. На самом деле мы не можем увидеть квантовую запутанность, но красивая визуализация помогает понять суть явления.
Один из основных вариантов ожидающей нас эволюции связи — использование квантовых эффектов. Эта технология не исключит, но может дополнить традиционные виды связи (хотя нельзя сходу отвергнуть идею, что сеть на основе квантовой запутанности, теоретически, может вытеснить остальные виды связи).
Квантовая запутанность — это явление связи квантовых характеристик. Связь может сохраняться, даже если частицы расходятся на большое расстояние, так как, измеряя квантовые характеристики одной из связанных частиц, мы автоматически узнаем характеристики и второй. Первый протокол квантовой криптографии появился ещё в 1984 году. С тех пор создано множество как экспериментальных, так и коммерческих систем, основанных на явлениях квантового мира.
(с) Chinese Academy of Sciences
Создать глобальную совершенную систему шифрования до недавнего времени не удавалось — уже через несколько десятков километров передаваемый сигнал затухал. Предпринимали много попыток увеличить это расстояние. В этом году Китай запустил спутник QSS (Quantum experiments at Space Scale), который должен реализовать схемы квантового распределения ключа на расстоянии более 7000 километров.
Спутник будет генерировать два запутанных фотона и отправлять на Землю. Если всё пройдет удачно, то распределение ключа при помощи запутанных частиц станет началом эры квантовой связи. Десятки таких спутников смогли бы стать основой не только нового квантового интернета на Земле, но и квантовой связи в космосе: для будущих поселений на Луне и Марсе и для дальней космической связи со спутниками, направляющимися за пределы Солнечной системы.
Квантовая телепортация
Устройство для квантового распределения ключа в лабораторных условиях, Российский квантовый центр.
При квантовой телепортации никакого материального переноса объекта из пункта А в пункт Б не происходит — происходит передача «информации», а не вещества или энергии. Телепортация используется для квантовых коммуникаций, например для передачи секретной информации. Надо понимать, что это не информация в привычном нам виде. Упрощая модель квантовой телепортации, можно сказать, что она позволит генерировать последовательность случайных чисел на обоих концах канала, то есть мы сможем создать шифроблокнот, который нельзя перехватить. В обозримом будущем это единственное, что можно сделать с помощью квантовой телепортации.
Впервые в мире телепортация фотона состоялась в 1997 году. Спустя два десятилетия телепортация по оптоволоконным сетям стала возможна на десятки километров (в рамках Европейской программы в области квантовой криптографии рекорд составил 144 километра). Теоретически, уже сейчас в городе можно построить квантовую сеть. Однако есть существенная разница между лабораторными и реальными условиями. Оптоволоконный кабель подвергается перепадам температур, из-за чего меняется коэффициент преломления. Из-за воздействия солнца может сдвинуться фаза фотона, что в определенных протоколах приведёт к ошибке.
Казанский Квантовый Центр, лаборатория квантовой криптографии.
Эксперименты ведутся по всему миру, в том числе и в России. Несколько лет назад появилась первая в стране линия квантовой связи. Она связала два корпуса университета ИТМО в Санкт-Петербурге. В 2016 году ученые из Казанского квантового центра КНИТУ-КАИ и университета ИТМО запустили первую в стране многоузловую квантовую сеть, добившись скорости генерирования просеянных квантовых последовательностей в 117 кбит/c на линии протяжённостью 2,5 километра.
В текущем году появилась и первая коммерческая линия связи — Российский квантовый центр связал офисы «Газпромбанка» на расстоянии 30 километров.
Осенью физики лаборатории квантовых оптических технологий МГУ и Фонд перспективных исследований испытали автоматическую систему квантовой коммуникации на расстоянии 32 километра, между Ногинском и Павловским Посадом.
С учётом темпов создания проектов в области квантовых вычислений и передачи данных, через 5-10 лет (по мнению самих физиков) технология квантовой коммуникации окончательно выйдет из лабораторий и станет такой же привычной, как мобильная связь.
Возможные недостатки
(с) Is Quantum Communication Possible
В последние годы всё чаще обсуждают вопрос информационной безопасности в сфере квантовой связи. Раньше считалось, что с помощью квантовой криптографии можно передавать информацию таким образом, что её нельзя перехватить ни при каких обстоятельствах. Оказалось, что абсолютно надежных систем не существует: физики из Швеции продемонстрировали, что при некоторых условиях квантовые системы связи можно взломать благодаря некоторым особенностям в подготовке квантового шифра. Кроме того, физики из Калифорнийского университета предложили метод слабых квантовых измерений, который фактически нарушает принцип наблюдателя и позволяет вычислить состояние квантовой системы по косвенным данным.
Впрочем, наличие уязвимостей — это не повод отказываться от самой идеи квантовой связи. Гонка между злоумышленниками и разработчиками (учеными) продолжится на принципиально новом уровне: с использованием оборудования с высокими вычислительными мощностями. Такое оснащение по силам далеко не каждому хакеру. Кроме того, квантовые эффекты, возможно, позволят ускорить передачу данных. С помощью запутанных фотонов можно передавать почти вдвое больше информации в единицу времени, если их дополнительно кодировать с помощью направления поляризации.
Квантовая связь — не панацея, но пока она остается одним из самых перспективных направлений развития глобальных коммуникаций.
Квантовые сети: перспективы и сложности реализации
По оценкам немецких исследователей из Общества Макса Планка, глобальную квантовую сеть удастся реализовать уже в ближайшие несколько лет. Расскажем, какие здесь есть сложности.
Что такое квантовые сети
Квантовая сеть — это система передачи данных, работающая по законам квантовой механики. В таких сетях обмен данными осуществляется при помощи кубитов. Это поляризованные фотоны, транслируемые по каналу оптической связи. Для того чтобы развернуть глобальные квантовые сети, покрывающие всю планету, как интернет, разработчикам и исследователям предстоит решить ряд трудностей. Например, определённую сложность вызывает передача фотонов на большие расстояния из-за их «хрупкости». Подробнее об этой и других проблемах мы расскажем далее, но сперва поговорим о том, зачем вообще создавать квантовые сети.
Чем они могут быть полезны
Явление квантовой запутанности связывает квантовые частицы таким образом, что при измерении характеристик одной из них, мы автоматически узнаем характеристики второй. Причем связь эта сохраняется даже на больших расстояниях.
Если установить между двумя точками соединение, можно генерировать последовательности случайных чисел на двух его концах. В криптографии эта особенность используется для генерации ключей шифрования.
Еще одно достоинство квантовых сетей — невозможность прочитать транслируемые фотоны дважды. Законы квантовой механики запрещают «клонирование» состояния частиц света. При перехвате кубита, он меняет своё значение. Получается, что при попытке «подслушать» канал передачи данных, злоумышленники не смогут извлечь никакой ценной информации. На выходе они получают случайный набор цифр.
Таким образом, квантовые сети — это почти абсолютная криптографическая защита. Почти абсолютная, так как ученые из Швеции доказали, что «подслушать» такую сеть все же возможно. Для этого нужно сымитировать квантовый шифр. Детекторы фотонов игнорируют неполяризованные частицы света, называемые нулями. Если сымитировать эти нули в определенный момент времени и направить их на приемник, то он посчитает сигнал квантовым (хотя это не так).
Решить проблему можно, но придется менять принципы работы приемников. Один из вариантов — добавить индикатор мощности сигнала (так как при вмешательстве извне она будет изменяться). Но это приведет к увеличению стоимости развертки квантовых сетей.
Почему это сложно
«Хрупкость» кубитов, которая делает квантовую коммуникацию надежной, привносит и недостатки. Одиночные фотоны меняют свои состояния или просто поглощаются средой из-за помех. По этой причине бывает сложно передать квант по оптоволоконному кабелю на расстояние свыше 100 км.
/ Flickr / Alexandre Delbos / CC
Сейчас оптоволоконные квантовые сети строятся с использованием повторителей. Они декодируют информацию, кодируют её снова и передают другим узлам по цепочке. Однако таким образом посредники тоже узнают содержание сообщения, что может привести к утечке в случае компрометации одного из них. Здесь возникает проблема и со стоимостью — такие повторители используют дорогостоящие магниты и редкие минералы.
Важно учитывать и среду, в которой эти сети будут развертываться. Есть существенная разница между лабораторными и «боевыми» условиями. В городе на оптоволоконные кабели влияют перепады температур. Это может привести к сдвигам фаз фотона и вызывать ошибки при передаче данных.
Решить проблему с передачей на большие расстояния позволит квантовая телепортация. Исследователи могут по желанию вводить два кубита в состояние квантовой запутанности. Таким проектом занимается группа из Делфтского технического университета в Нидерландах. Исследователи строят десятикилометровую квантовую сеть между городом Делфт и Гаагой.
Такие технологии пока находятся на ранних этапах разработки. Дело в том, что поддерживать «связанность» продолжительное время затруднительно из-за разрушающего эффекта (называемого декогерентностью), которое оказывает на кванты внешняя среда. Удержать состояние квантовой запутанности удается на доли секунды.
Где можно будет использовать квантовые сети
Как мы уже говорили, квантовые сети обладают высокой стойкостью к прослушке. Поэтому они позволяют строить надежные системы распределения криптографических ключей. Такие технологии уже есть. Например, в начале года в Китае запустили систему распределения криптографических ключей, в которой данные передаются посредством спутников и лазерных лучей. Похожую систему предложили немецкие исследователи.
Также квантовые сети должны объединить в сети квантовые компьютеры. Ожидается, что кластеры квантовых машин ускорят проведение физических и химических симуляций, например, при разработке новых медицинских препаратов.
Есть юзкейсы и за пределами науки, например голосования. Такой проект был реализован в Швейцарии — несколько лет назад CERN помогли организовать квантовую сеть для проведения выборов. По словам экспертов из Гарвард-Смитсоновского центра астрофизики, помимо надежности квантовые сети дают возможность реализовывать новые стратегические схемы голосования, недоступные сегодня. Например, люди получат возможность выбирать не одного кандидата, а сразу двух (второй вариант).
Развитием квантовых сетей занимаются многие институты и организации. Поэтому в последнее время появляется всё больше подобных проектов. Об иностранных и российских разработках в этой области, мы расскажем в наших следующих материалах на Хабре.
В России заработала первая линия квантовой связи
В России начала работу первая линия квантовой связи. Она имеет протяженность 700 км, что делает ее самой крупной в Европе. Строительство вели РЖД на базе собственных оптоволоконных сетей, и к 2024 г. протяженность линий квантовой связи возрастет до 7000 км, хотя изначально планировалось за этот срок развить ее до 10 тыс. км. Размер вложений к 2024 г. составит более 19 млрд руб.
Первая в России линия квантовой связи
В России заработала первая в стране линия связи по магистральному защищенному квантовому каналу. Как сообщили CNews представители РЖД, с ее помощью был осуществлен первый сеанс видеосвязи.
Магистральный канал соединяет Москву и Санкт-Петербург. Он имеет протяженность 700 км, что делает его самым крупным в Европе и вторым по величине в мире. Представители РЖД утверждают, что при строительстве канала использовались отечественные решения.
Строительством канала связи занимались РЖД. Помощь в этом компании оказывали Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО), а также компании ООО «Специальный Технологический Центр», ООО «СМАРТС-Кванттелеком», ООО «Амикон».
Физическая основа квантовых сетей в данном случае – это магистральные оптоволоконные каналы РЖД.
Сеанс связи был осуществлен при участии российского вице-премьера Дмитрия Чернышенко. С его слов, квантовыми коммуникациями интересуются как частные корпорации, так и государственные органы. Чернышенко добавил также, что развитие квантовых сетей в России продолжится, и до 2024 г. их протяженность увеличится до 7000 км.
Председатель правления ОАО «РЖД» Олег Белозеров, тоже принимавший участие в запуске 700-километрового квантового канала связи, назвал этот проект плотным. Он заявил, что на его реализацию ушло меньше года.
Как работают квантовые коммуникации
Основная задача квантовых сетей заключается в безопасной и быстрой передаче данных на большие расстояния. Такие сети базируются на оптоволоконных кабелях. Передаваемые по ним данные шифруются алгоритмом квантового распределения ключей.
Под этим алгоритмом подразумевается создание двух произвольных ключей, по одному для каждой из сторон передачи информации, и выработку общего произвольного ключа, необходимого для шифровки и дешифровки передаваемых данных фотонах. Общий ключ известен только «собеседникам», что исключает возможность несанкционированного перехвата.
В случае осуществления попытки несанкционированного получения доступа к передаваемой информации без ключа дешифровки сами данные будут искажены, поскольку измерение квантового состояния фотона невозможно без внесения в него изменений. Этот принцип лежит в основе квантовой криптографии. Она была предложена более полувека назад, в 1970 г. израильским физиком-исследователем Стивеном Визнером (Stephen Wiesner) и канадским физиком-теоретиком Жилем Брассаром (Gilles Brassard).
Как РЖД связаны с квантами
РЖД – один из инициаторов развития квантовых сетей в России. Об интересе компании к этому направлению стало известно в июле 2019 г, когда она подписала соглашение о намерениях с Правительством России. На церемонии подписания присутствовал Президент России Владимир Путин, а его цель заключается в ускорении технологического развития и достижения Россией позиции одного из лидеров на глобальных технологических рынках в сфере квантовых коммуникаций.
К январю 2020 г. у РЖД был готов проект «дорожной карты» развития квантовых сетей. В Согласно нему, компания планировала вложить в них 24,7 млрд руб. до 2024 г. включительно. Половину этой суммы (12,9 млрд руб.), как было указано в проекте, предлагалось взять из бюджета страны, 5,3 млрд руб. хотели выделить сами РЖД, а 6,5 млрд руб. планировалось привлечь из внебюджетных источников.
В конце июля 2020 г. проект «дорожной карты» претерпел ряд изменений, в том числе и по части размеров вложений. Сумма уменьшилась до 19,3 млрд руб. за период до 2024 г. включительно. Из этой суммы федеральный бюджет выделит 13 млрд руб., внебюджетные источники – 6,5 млрд руб., а РЖД – 5,3 млрд руб.
«Дорожная карта» РЖД была принята властями в конце лета 2020 г., о чем сообщил Дмитрий Чернышенко во время запуска соединившего две столицы квантового канала. «Дорожная карта по квантовым коммуникациям была подписана только в августе прошлого года, но уже сейчас есть конкретный результат – квантовая сеть, которую мы сегодня запустили», – сказал вице-премьер.
Специально для развития квантовых сетей в РЖД в августе 2019 г. было создано отдельное подразделение – Департамент квантовых коммуникаций. Как сообщал CNews, основная цель нового отдела заключается в повышении эффективности бизнес-процессов РЖД, безопасности железнодорожного транспорта, а также наращивание эффективности использования инфраструктуры российской железнодорожной сети.
Планы на будущее
Олег Белозеров сообщил, что РЖД планируют и дальше работать над развитием квантовых сетей в России. «По дорожной карте мы должны реализовать 120 проектов, 75 продуктов и сервисов», – отметил он, добавив, что магистральная квантовая сеть Москва – Санкт-Петербург даст возможность «апробировать новые технологические решения, внедрить критически важные сервисы».
Глава РЖД также сообщил, что компания примет участие в организации проектов по внедрению отечественных программных коммуникационных систем в деятельность исполнительных органов государственной власти Санкт-Петербурга. Для этого РЖД собираются использовать свой опыт в построении системы коммуникаций и применения технологий искусственного интеллекта.
Первая версия проекта «дорожной карты» РЖД гласила, что российский рынок квантовых коммуникаций вырастет как минимум до 55 млрд руб. к 2024 г. По прогнозам компании, к этому времени он должен занять около 8% глобального рынка квантовых сетей.
Следует отметить, что в проекте «дорожной карты» в январе 2020 г. говорилось о наращивании суммарной протяженности российских квантовых сетей до 10 тыс. км. к 2024 г. Спустя полтора года Дмитрий Чернышенко озвучил прогнозы о протяженности 7000 км. С чем связано понижение ожиданий, остается неизвестным.
Квантовые технологии. Модуль 5
Узнайте больше о квантовых коммуникациях
В этом модуле вы узнаете:
• о роли и месте криптографии в современных телекоммуникационных системах;
• о главных уязвимостях сетей передачи данных;
• о квантовых методах, которые могут защитить от прослушивания;
• о принципах работы и устройстве квантовой связи и квантовых сетей.
Оглавление
Модуль 5. Квантовые коммуникации
Проверочный тест
Квантовые коммуникации (или квантовая криптография) — технология кодирования и передачи данных в квантовых состояниях фотонов. Законы физики не позволяют измерить квантовое состояние так, чтобы оно не изменилось, поэтому квантовый канал связи невозможно прослушать незаметно для адресатов.
Квантовые коммуникации и квантовые сети сегодня активно развиваются во всем мире, они востребованы банками, государственными организациями и военными.
Зачем нужна «обычная» криптография
Защита данных от посторонних глаз стала будничным делом почти для каждого человека, пользующегося электронной почтой, мессенджерами, банковскими приложениями или просто посещающего сайты в интернете.
Отправляя сообщение, заходя в приложение или открывая страницу в сети, мы передаем свою информацию, и ее нужно защитить от несанкционированного доступа. Для этого есть множество методов шифрования данных.
Хотя для нас, пользователей, они незаметны, представить без них нормальную жизнь и работу уже нельзя.
Шифрование обычно происходит так: исходный текст по определенным правилам преобразуется, чтобы его невозможно было прочесть и понять, а затем тот, кому он предназначен, проделывает обратную операцию — расшифровывает его.
Роль инструкции для шифрования и дешифровки играет шифровальный ключ. Чем длиннее ключ, тем сложнее «взлом» шифра, а если длина ключа сопоставима с длиной зашифрованного текста, то его дешифровка без знания ключа может быть просто невозможной.
Однако если ключ попадет в чужие руки, шифрование становится бессмысленным. Чтобы обеспечить безопасную передачу ключа, его можно отправить с доверенным курьером или по какому-то каналу, заведомо защищенному от прослушивания.
Но когда шифруется едва ли не вся информация в сети, создавать специальные каналы для ключей нецелесообразно. Особенно учитывая, что ключи для шифрования нужно постоянно менять. Поэтому и шифровальные ключи, и сами зашифрованные сообщения передаются по одним и тем же каналам.
Разумеется, ключи нельзя сообщать открытым текстом — либо они шифруются в соответствии со специальными алгоритмами, либо используются асимметричные криптографические алгоритмы с открытым и закрытым ключом.
И в том и в другом случае желающим сохранить в секрете свои данные остается полагаться только на то, что дешифровка сообщения без знания ключей требует слишком большой вычислительной мощности и слишком большого времени (в некоторых случаях речь идет о паре тысяч лет).
Один из самых распространенных методов защиты информации — использование криптографии с открытым ключом. Он основан на использовании односторонних функций, то есть таких, где x из известного y невозможно вычислить за разумный срок, в то время как вычисление y из x не представляет никаких сложностей.
Таким асимметричным действием может быть обычное умножение: если сложность операции умножения растет по мере увеличения множителей не слишком быстро и современные вычислительные машины легко перемножают даже очень большие числа, то обратная операция — разложение на множители, факторизация — для достаточно больших чисел может оказаться не по плечу даже самым мощным суперкомпьютерам.
Другой пример — хэш-функции, используемые для «опознавания» паролей. Из пароля пользователя по специальному алгоритму вычисляется символьная строка — «хэш», которая и хранится на сервере.
Каждый раз, когда пользователь пытается зайти на сервер (например, электронной почты), вводит пароль, программа вычисляет хэш и сравнивает его с тем, что хранится на сервере. При ошибке в пароле даже на один символ хэш изменится и в доступе будет отказано.
Заметьте, на сервере сам пароль не хранится и по сетям не передается, поэтому даже если вас будут «подслушивать», взломать вашу почту злоумышленник не сможет.
На такого рода асимметричных функциях основана криптография с открытым ключом, в частности алгоритмы RSA, PGP и многие другие. Однако их защита все же не абсолютна — в конечном счете даже очень сложные функции теоретически можно вычислить. Возможно, в скором будущем появятся квантовые компьютеры, которые смогут сделать это относительно легко.
Один из вариантов решения этой проблемы — защитить сам процесс передачи ключей, чтобы прослушивание было невозможно и посторонний, даже подключившись к вашей линии, не смог прочесть ваши данные. И здесь нам может помочь квантовая физика.
Как была изобретена квантовая криптография
В конце 1960-х годов студент университета Колумбии Стивен Визнер поделился со своим приятелем Чарльзом Беннетом идеей, как сделать банкноты, абсолютно защищенные от подделки, — квантовые деньги.
Для этого на каждую банкноту следовало поместить ловушку для фотонов, причем каждый фотон должен быть поляризован в одном из двух базисов: либо под углом 0 и 90, либо 45 и 135 градусов. Комбинацию поляризаций и базисов, соответствующую серийному номеру банкноты, знает только банк.
Если злоумышленник попытается воспроизвести банкноту, он должен будет измерить поляризацию каждого фотона. Поскольку он не знает, в каких базисах нужно измерять поляризацию, то он не сможет получить верные данные о состояниях фотонов, и его затея провалится.
Идею Визнера использовать квантовые методы для защиты информации долго не признавали. Первую статью он отправил в журнал IEEE Transactions on Information Theory еще в начале 1970-х годов, но редакторы ее отвергли.
Статья была опубликована только в 1983 году в журнале ACM Newsletter Sigact News. А в 1984 году Чарльз Беннет и Жиль Брассар придумали первый квантовый протокол передачи данных — BB84.
Первый реальный эксперимент по квантовой передаче данных они провели в 1989 году — квантовая связь была установлена на дистанции 32,5 сантиметра. Прибор менял поляризацию передаваемых фотонов, но при этом шумел по-разному в зависимости от поляризации.
«Наш прототип был защищен от любого подслушивающего, который был бы глухим», — писал Брассар. Тогда до появления первой коммерческой компании, которая вывела на рынок системы квантового распределения ключей, оставалось более 10 лет — первой это сделала американская компания MagiQ Technologies в 2003 году.
А еще через четыре года, в 2007-м, система квантовой защищенной связи, разработанная компанией Id Quantique, впервые использовалась для защиты данных о результатах голосования на парламентских выборах в швейцарском кантоне Женева.
Принципы квантового распределения ключей
Точно так же устроена и квантовая криптография: данные кодируются в состояниях фотона, которые в соответствии с законами квантовой механики необратимо меняются при попытке измерения.
В теории для квантовой связи можно использовать любые объекты, способные находиться в двух разных квантовых состояниях, иначе говоря, любые кубиты — например, электроны, ионы и так далее. Однако из-за широкого распространения волоконно-оптических сетей фотоны остаются практически безальтернативным вариантом для квантовой криптографии.
В обычных волоконных линиях информация кодируется в импульсах излучения лазера, например в двухуровневой форме (есть сигнал — 1, нет сигнала — 0).
Для квантовой связи данные кодируются в состояниях одиночных фотонов — например, в поляризации или фазе. Так, одному варианту поляризации приписывается значение 1, противоположному — 0.
Два главных участника квантовой беседы традиционно обозначаются как Алиса (отправитель сообщения) и Боб (получатель), иногда к этим героям присоединяется третий — Ева, которая пытается подслушать разговор. Когда Ева измеряет фотоны, их состояния меняются, и Боб понимает, что линия связи скомпрометирована.