поле создается бесконечной равномерно заряженной плоскостью
Поле бесконечной равномерно заряженной плоскости
Пусть имеется бесконечная равномерно заряженная плоскость. Поверхностная плотность заряда равна а.
Из симметрии системы следует, что поле должно быть симметричным относительно плоскости (эго можно доказать примерно гак же, как в предыдущем примере). Следовательно, вектор Е везде перпендикулярен плоскости и в одинаково удалённых от плоскости точках модули вектора Е одинаковы.
В этом случае в качестве поверхности ин- тегрирования целесообразно выбрать цилиндр, ориентированный так, как показано на рисунке.
Поток вектора Е и здесь складывается из потока через боковую поверхность цилиндра и потока через торцы цилиндра: ф=ф 6ок + + 2Ф
Поток вектора напряженности через боковую поверхность равен нулю, так как в силу симметрии поля вектор напряжённости должен
Поток вектора напряжённости через торцевые поверхности Фтори = Епг2 > г Д е ‘’-радиус основания цилиндра.
Суммарный заряд, охваченный поверхностью цилиндра, равен
Полученное выражение показывает, что напряжённость поля, созданного бесконечной равномерно заряженной плоскостью, прямо пропорциональна поверхностной плотности заряда и не зависит от расстояния.
Обратите внимание: в этом случае напряжённость электрического поля на любых расстояниях от плоскости одинакова!
Поле создается бесконечной равномерно заряженной плоскостью
Вычисление электрических полей с помощью теоремы Остроградского –Гаусса | |
Продемонстрируем возможности теоремы Остроградского-Гаусса на нескольких примерах. Поле бесконечной однородно заряженной плоскости Поверхностная плотность заряда на произвольной плоскости площадью S определяется по формуле: где d q – заряд, сосредоточенный на площади d S; d S – физически бесконечно малый участок поверхности. Пусть σ во всех точках плоскости S одинакова. Заряд q – положительный. Напряженность Очевидно, что в симметричных, относительно плоскости точках, напряженность Представим себе цилиндр с образующими, перпендикулярными плоскости, и основаниями ΔS, расположенными симметрично относительно плоскости (рис. 2.12).
Тогда Суммарный поток через замкнутую поверхность (цилиндр) будет равен: Внутри поверхности заключен заряд откуда видно, что напряженность поля плоскости S равна: Полученный результат не зависит от длины цилиндра. Это значит, что на любом расстоянии от плоскости Поле двух равномерно заряженных плоскостей Пусть две бесконечные плоскости заряжены разноименными зарядами с одинаковой по величине плотностью σ (рис. 2.13). Результирующее поле, как было сказано выше, находится как суперпозиция полей, создаваемых каждой из плоскостей Тогда внутри плоскостей Вне плоскостей напряженность поля Полученный результат справедлив и для плоскостей конечных размеров, если расстояние между плоскостями гораздо меньше линейных размеров плоскостей (плоский конденсатор). Между пластинами конденсатора действует сила взаимного притяжения (на единицу площади пластин): Механические силы, действующие между заряженными телами, называют пондермоторными. Тогда сила притяжения между пластинами конденсатора: где S – площадь обкладок конденсатора. Т.к. Это формула для расчета пондермоторной силы. Поле заряженного бесконечно длинного цилиндра (нити) Пусть поле создается бесконечной цилиндрической поверхностью радиуса R, заряженной с постоянной линейной плотностью Из соображения симметрии следует, что Е в любой точке будет направлена вдоль радиуса, перпендикулярно оси цилиндра. Представим вокруг цилиндра (нити) коаксиальную замкнутую поверхность (цилиндр в цилиндре) радиуса r и длиной l (основания цилиндров перпендикулярно оси). Для оснований цилиндров Следовательно, поток вектора При Если Если уменьшать радиус цилиндра R (при Поле двух коаксиальных цилиндров с одинаковой линейной плотностью λ, но разным знаком В зазоре между цилиндрами, поле определяется так же, как и в предыдущем случае: Это справедливо и для бесконечно длинного цилиндра, и для цилиндров конечной длины, если зазор между цилиндрами намного меньше длины цилиндров (цилиндрический конденсатор). Поле заряженного пустотелого шара Пустотелый шар (или сфера) радиуса R заряжен положительным зарядом с поверхностной плотностью σ. Поле в данном случае будет центрально симметричным, Если откуда поле вне сферы: Внутри сферы, при Как видно из (2.5.7) вне сферы поле тождественно полю точечного заряда той же величины, помещенному в центр сферы. Поле объемного заряженного шара Для поля вне шара радиусом R (рис. 2.18) получается тот же результат, что и для пустотелой сферы, т.е. справедлива формула: Но внутри шара при где ρ – объемная плотность заряда, равная: Таким образом, внутри шара Поле создается бесконечной равномерно заряженной плоскостью1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS — заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε0, откуда Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно. 2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаваются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E+ + E— (E+ и E— находятся по формуле (1)), поэтому результирующая напряженность Значит, результирующая напряженность поля в области между плоскостями описывается зависимостью (2), а вне объема, который ограничен плоскостями, равна нулю. Поле бесконечной равномерно заряженной плоскости. Поле плоского конденсатораПусть электрическое поле создаётся зарядом, равномерно распределённым по поверхности безграничной плоскости, с поверхностной плотностью s (рис. 2.8.) Из симметрии задачи следует, что поле повсюду направлено перпендикулярно к поверхности. Выясним, как меняется напряжённость поля по мере удаления от заряженной плоскости. В качестве гауссовой поверхности удобно выбрать цилиндр. Ось цилиндра направим перпендикулярно плоскости, его основание расположим на расстоянии Х симметрично по обе стороны от поверхности. Вычислим поток вектора напряжённости через боковую поверхность и основания цилиндра. Как следует из рис. 2.8., поток вектора напряжённости Тогда полный поток через замкнутую цилиндрическую поверхность можно записать как поток через два основания цилиндра. Это величина, рассчитанная по определению потока. Теперь воспользуемся теоремой Гаусса, заметив, что заряд q, «находящийся внутри гауссовой поверхности», в данном случае сосредоточен на площадке S = Sосн, «вырезанной» цилиндром на бесконечной плоскости Объединим результаты(2.15) и (2.14) в уравнение Гаусса: Вывод. Поле, созданное бесконечной равномерно заряженной плоскостью, однородно. Оно не меняется с расстоянием от заряженной поверхности ни по величине, ни по направлению. Теперь рассмотрим еще один важный пример. Пусть поле создаётся двумя бесконечными плоскостями, заряженными разноименно, но с одинаковой по величине поверхностной плотностью заряда (рис. 2.9.). Это важная идеализация электростатики — плоский конденсатор. Каждая обкладка этого конденсатора создаёт однородное поле, напряжённость которого мы только что установили (2.16): Силовые линии поля положительно заряженной плоскости направлены от неё, а отрицательной — к плоскости. При сложении этих полей, напряжённость результирующего поля вне конденсатора оказывается равной нулю, а внутри конденсатора, где эти поля совпадают по направлению, — поле удваивается: Дата добавления: 2015-08-08 ; просмотров: 916 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ Теорема Гаусса. Применение теоремы Гаусса к расчёту электростатических полей.Когда зарядов много, при расчётах полей возникают некоторые трудности. Полный же поток через всю поверхность будет равен сумме потоков от всех зарядов, произвольным образом распределённых внутри её и пропорционально величине этого заряда Если поле образовано системой зарядов, то Теорема Гаусса: поток вектора напряжённости электростатического поля в вакууме сквозь любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности, делённой на электрическую постоянную. Если внутри сферы зарядов нет, то Ф = 0. Теорема Гаусса позволяет сравнительно просто рассчитать электрические поля при симметрично распределённых зарядов. Введём понятие о плотности распределенных зарядов. · Линейная плотность обозначается τ и характеризует заряд q, приходящийся на единицу длины ℓ. В общем виде может быть рассчитана по формуле При равномерном распределении зарядов линейная плотность равна · Поверхностная плотность обозначается σ и характеризует заряд q, приходящийся на единицу площади S. В общем виде определяется по формуле При равномерном распределении зарядов по поверхности поверхностная плотность равна · Объёмная плотность обозначается ρ, характеризует заряд q, приходящийся на единицу объёма V. В общем виде определяется по формуле При равномерном распределении зарядов она равна o Н Так как заряд q располагается на сфере равномерно, то σ = const. Применим теорему Гаусса. Проведём сферу радиусом через точку А. Поток вектора напряжённости рис.12.9 сквозь сферическую поверхность радиуса равен Согласно теореме Гаусса, Так как Таким образом, напряжённость поля бесконечной заряженной плоскости пропорциональна поверхностной плотности заряда и не зависит от расстояния до плоскости. Следовательно, поле плоскости является однородным. o Напряжённость поля, создаваемого двумя разноименно равномерно заряженными параллельными плоскостями Между плоскостями напряжённости полей имеют одинаковые направления, поэтому результирующая напряжённость равна Таким образом, поле между двумя разноименно равномерно заряженными плоскостями однородно и его напряжённость в два раза больше, чем напряжённость поля, создаваемого одной плоскостью. Слева и справа от плоскостей поле отсутствует. Такой же вид имеет и поле конечных плоскостей, искажение появляется только вблизи их границ. С помощью полученной формулы можно рассчитать поле между обкладками плоского конденсатора. Работа электростатического поля по перемещению заряда. Потенциал электростатического поля. Потенциал поля точечного заряда, заряженной сферы. Разность потенциалов. На заряд qпр помещённый в произвольную точку электростатического поля с напряжённостью Е, действует сила F= qпр E. Если заряд не закреплён, то сила заставит его перемещаться и, значит, будет совершаться работа. Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда qпр из точки а электрического поля в точку b на отрезке пути dℓ, по определению, равна Если работа совершается внешними силами, то dA 0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении qпр из точки a в точку b ( Перемещение совершается перпендикулярно вектору Работа сил электрического поля при перемещении заряда не зависит от формы пути, а зависит лишь от взаимного расположения начальной и конечной точек траектории. Это свойство потенциальных полей. Из него следует, что работа совершаемая в электрическом поле по замкнутому контуру, равна нулю:
4. Потенциал поля объемно заряженного шара Для простоты расчетов примем Зависимость т где Д Зависимость Связь напряженности и потенциала электростатического поля. Эквипотенциальные поверхности и линии напряженности. Разность потенциалов между точками поля объемно заряженного шара, между двумя точками поля равномерно заряженной бесконечно протяженной плоскости и между двумя равномерно заряженными плоскостями. Связь между этими величинами аналогична связи между потенциальной энергией и консервативной силой: где Эта формула выражает фундаментальную связь между напряженностью и потенциалом: напряжённость поля равна градиенту потенциала со знаком минус. Если перемещение происходит только вдоль направления оси ОХ, то можно записать: Связь между напряжённостью и потенциалом позволяет по известной напряжённости поля найти разность потенциалов между двумя произвольными точками: Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий. Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке. Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя. Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ( Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями. Эквипотенциальные линии являются замкнутыми сами на себя. Силовые линии и эквипотенциальные линии пересекаются под прямым углом. Р Поле объемно заряженного шарарадиуса R с общим зарядом Q вне шара (r>R) вычисляется по формуле (82.3), поэтому разность потенциалов между двумя точками, лежащими на расстояниях r1и r2 от центра шара (r1>R, r2>R), определяется формулой (86.2). В любой точке, лежащей внутри шара на расстоянии r’ от его центра (r’ 3 )r’.Следовательно, разность потенциалов между двумя точками, лежащими на расстояниях r‘1и r‘2 от центра шара (r’1
|