постоянное и переменное магнитное поле это
Переменное и постоянное магнитное поле: что эффективнее?
Лечение магнитотерапией не только не теряет популярность с годами — напротив, покупателей приборов для проведения процедур на дому становится все больше. Маленький и удобный аппарат магнитотерапии АМТ-01, его аналоги, такие как Магнитер и Солнышко из экзотики постепенно превращаются в привычные каждому устройства. Это неудивительно, ведь магнитотерапия для суставов, магнитотерапия при варикозе, при кожных болезнях, нарушениях работы эндокринной, пищеварительной системы — одна из самых действенных физиотерапевтических методик. При этом действие магнитотерапии отличается мягкостью: побочные эффекты — большая редкость, а о неприятных ощущениях в ходе процедур не упоминал ни один больной.
Чаще всего больные, которым было рекомендовано применение магнитотерапии, приобретают одно из устройств, генерирующих переменное магнитное поле. Но в продаже есть и аппликаторы, действие которых основано на эффекте постоянного магнитного поля. И стоят они дешевле.
Разберемся с тем, можно ли здесь сэкономить
Выбираем прибор для процедур
Магнитотерапия в домашних условиях проводится при помощи компактных и относительно недорогих устройств. Но для некоторых больных, которым была показана магнитотерапия, Алмаг-01 за 10 000 рублей и даже АМТ-01 за 2 500 рублей будет достаточно дорогой покупкой.
На первый взгляд отличным вариантом выглядит покупка магнитного аппликатора, такого как Бимаг или Целитон. Но на самом деле все не так просто. Ведь подключающиеся к электросети устройства генерируют переменное магнитное поле, а подобные аппликаторы сделаны из намагниченного металла. И они являются источниками слабого постоянного магнитного поля.
Конечно, магнитотерапия в домашних условиях с применением подобных устройств даст ощутимый эффект. Но:
Таким образом, для большей части пациентов, которым требуется магнитотерапия, МАГ-30, Алмаг-01 или АМТ-01 будет лучшим выбором за счет их большей мощности. Нужно отметить, что общего у всех популярных устройств очень много. Чтобы убедиться в этом, достаточно набрать в любом поисковике «магнитотерапия показания и противопоказания» и ознакомиться с информацией о разных приборах, которые в этом плане полностью аналогичны.
Совмещаем полезное с полезным
Тем не менее, аппликаторы, генерирующие слабое постоянное магнитное поле, будут отличной покупкой. Просто не нужно пытаться заменить ими приборы, которые генерируют переменное магнитное поле. Лучше обзавестись и тем, и другим.
Дело в кратковременности курсов, которыми обычно проводится низкочастотная магнитотерапия. Инструкция к любому прибору говорит, что оптимальная продолжительность курса составляет 10-14 дней, а промежуток между ними должен составлять около месяца.
В промежутках между такими курсами, когда больным не рекомендована низкочастотная магнитотерапия, можно делать процедуры с использованием магнитных аппликаторов. В целом проводятся они так же, как и «классическая» магнитотерапия. Алгоритм прост: плоский диск аппликатора просто накладывается на область патологического процесса и закрепляется на теле примерно на 10-15 минут. А некоторые из них можно носить, как кулоны.
Совместите полезное с полезным для того, чтобы добиться максимального эффекта!
Теория магнитного поля и интересные факты о магнитном поле Земли
Давайте вместе разбираться в том, что такое магнитное поле. Ведь многие люди живут в этом поле всю жизнь и даже не задумываются о нем. Пора это исправить!
Магнитное поле
Магнитное поле – особый вид материи. Оно проявляется в действии на движущиеся электрические заряды и тела, которые обладают собственным магнитным моментом (постоянные магниты).
Важно: на неподвижные заряды магнитное поле не действует! Создается магнитное поле также движущимися электрическими зарядами, либо изменяющимся во времени электрическим полем, либо магнитными моментами электронов в атомах. То есть любой провод, по которому течет ток, становится также и магнитом!
Магнит
У магнита есть полюса, называемые северным и южным. Обозначения «северный» и «южный» даны лишь для удобства (как «плюс» и «минус» в электричестве).
Картина магнитного поля
Характеристики магнитного поля
Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток и магнитная проницаемость. Но давайте обо всем по порядку.
Сразу отметим, что все единицы измерения приводятся в системе СИ.
Магнитная индукция B – векторная физическая величина, являющаяся основной силовой характеристикой магнитного поля. Обозначается буквой B. Единица измерения магнитной индукции – Тесла (Тл).
Магнитная индукция показывает, насколько сильно поле, определяя силу, с которой оно действует на заряд. Данная сила называется силой Лоренца.
Можно сказать, что магнитный поток характеризует количество линий магнитной индукции, пронизывающих единицу площади. Магнитный поток измеряется в Веберах (Вб).
Магнитный поток
Магнитная проницаемость – коэффициент, определяющий магнитные свойства среды. Одним из параметров, от которых зависит магнитная индукция поля, является магнитная проницаемость.
Магнитное поле Земли
Происхождение магнитного поля Земли до сих пор остается загадкой для ученых. Предполагается, что источником поля является жидкое металлическое ядро Земли. Ядро движется, значит, движется расплавленный железо-никелевый сплав, а движение заряженных частиц – это и есть электрический ток, порождающий магнитное поле. Проблема в том, что эта теория (геодинамо) не объясняет того, как поле сохраняется устойчивым.
Магнитное поле земли
Каково значение магнитного поля Земли для нас? В первую очередь магнитное поле Земли защищает планету от космических лучей и солнечного ветра. Заряженные частицы из далекого космоса не падают прямо на землю, а отклоняются гигантским магнитом и движутся вдоль его силовых линий. Таким образом, все живое оказывается защищенным от пагубной радиации.
Магнитное поле Земли
За историю Земли происходило несколько инверсий (смен) магнитных полюсов. Инверсия полюсов – это когда они меняются местами. Последний раз это явление произошло около 800 тысяч лет назад, а всего геомагнитных инверсий в истории Земли было более 400. Некоторые ученые полагают, что с учетом наблюдающегося ускорения движения магнитных полюсов следующей инверсии полюсов следует ожидать в ближайшие пару тысяч лет.
К счастью, в нашем веке смены полюсов пока не ожидается. А значит, можно думать о приятном и наслаждаться жизнью в старом добром постоянном поле Земли, рассмотрев основные свойства и характеристики магнитного поля.
Представление о магнитном поле
Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.
Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.
За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.
В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.
Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.
Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.
Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.
Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.
Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.
Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.
Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.
Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:
Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).
Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.
А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.
Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.
Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.
Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:
При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.
Модель магнитного поля движущегося заряда
Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.
Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.
Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.
Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.
А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.
Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.
Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».
Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.
И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.
У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).
Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:
Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.
Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.
Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia
UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.
Магнит чувствует электрическое поле
А. П. Пятаков,
кандидат физико-математических наук
А. К. Звездин,
доктор физико-математических наук
«Химия и жизнь» №5, 2013
Куда ни кинь взгляд, всюду — магнит. Когда-то школьникам рассказывали только про компас, позже — про применение в промышленности, в последнее время заговорили о будущем поезде на магнитной подвеске. Хотя можно было бы сказать, что любой электродвигатель и любой трансформатор — электромагнит. Сегодня убедить читателя в важности магнитов стало проще: достаточно сказать, что магнит почти наверняка есть у него дома (на дверце холодильника и в микроволновке), в кармане (в сотовом), десятки магнитов — в компьютере и автомобиле. В промышленности и медицине их вообще не счесть, и физика элементарных частиц без них не обходится — они стоят и по всему периметру ускорительного кольца, и в большинстве детекторов элементарных частиц.
Есть постоянные магниты, есть электромагниты. Постоянные имеют один большой плюс — не потребляют энергию, и несколько минусов — их поле нельзя регулировать (а если можно, то медленно — механически перемещая), и оно не может быть очень сильным. Электромагниты свободны от этих недостатков, но зато у них есть тот, которого нет у постоянных магнитов, — они потребляют энергию, и много потребляют. Иногда говорят, что проблему решают электромагниты со сверхпроводящими обмотками, как у Токамака. Но, во-первых, ни жидкого гелия, ни жидкого азота на Земле из озера не зачерпнешь, а во-вторых, магнитное поле таких электромагнитов тоже трудно регулировать.
Возникает идея: скрестить электрическое и магнитное поле, найти вещество или создать материал, при помещении которого в электрическое поле он становится магнитом, а в магнитном поле, наоборот, проявляет электрические свойства. О таких веществах рассказывается в статье А. П. Пятакова и А. К. Звездина из Московского государственного университета им. М. В. Ломоносова и Института общей физики им. А. М. Прохорова.
Переменный постоянный магнит
Магнитные и электрические явления известны с античных времен, но связать их между собой удалось намного позже, уже после работ классиков электромагнетизма: Эрстеда, Ампера, Фарадея, Максвелла. Вслед за Ампером магнитные свойства постоянных магнитов стали объяснять «молекулярными» токами, текущими внутри вещества в каждой молекуле. Хотя природа молекулярных токов долгое время оставалась непонятой, сама возможность вечного движения зарядов внутри вещества казалась многообещающей (такая возможность реализуется и в сверхпроводниках, но при низких температурах). Если бы с помощью электрического поля удалось воздействовать на молекулярные токи, то можно было бы управлять постоянными магнитами практически без потерь энергии.
Слева направо: Пьер Кюри (1859–1906), Бернард Теллеген (1900–1990), Л. Д. Ландау (1908–1968) (справа) и Е. М Лифшиц (1915–1985), И. Е. Дзялошинский (слева) и Д. Н. Астров, Джордж Радо, Г. А. Смоленский (1910–1986)
В 1884 году французский физик Пьер Кюри высказал мысль, что существование таких молекул и веществ, которые намагничивались бы под действием электрического поля, не противоречит известным законам. Американский инженер-электроник Бернард Теллеген позже предложил создать композит — магнитоэлектрическую среду в виде взвеси, где плавали бы частицы, представлявшие собой магнитики, сцепленные с кусочками электрета. А электрет — это вещество, которое можно «зарядить» внешним электрическим полем, и оно после этого долго, например годы, создает вокруг себя электрическое поле, как магнит — магнитное. Электретами являются многие хорошие диэлектрики, однако материалы, сочетающие в себе свойства и электрета и магнита, ни найдены, ни созданы не были. Хотя название для них придумали — «магнитоэлектрики».
Дело сдвинулось с мертвой точки, когда Л. Д. Ландау и Е. М. Лифшиц указали, что магнитоэлектрики надо искать среди антиферромагнетиков, то есть кристаллов, состоящих из противоположно намагниченных подрешеток (рис. 1). И. Е. Дзялошинский назвал в 1959 году конкретное соединение — Cr2O3, и через год магнитоэлектрический эффект в этом материале был обнаружен Д. Н. Астровым. За несколько лет до того американские ученые в группе профессора Джорджа Радо пытались обнаружить магнитоэлектрические свойства у различных веществ, но поиски оказались безрезультатными, поскольку они не знали о работах Ландау, Лифшица и Дзялошинского — переводы книг и статей выходили с задержкой. Узнав об открытии Астрова, они продемонстрировали на Cr2O3 и обратный эффект — электрическую поляризацию, наводимую магнитным полем.
Рис. 1. Антиферромагнетизм. Идею антиферромагнитного упорядочения предвосхитили рисунки Мориса Эшера, например «День и ночь» (а), в соседних узлах кристаллической ячейки магнитные стрелки (моменты) ионов направлены противоположно (б)
В это же время в ленинградском Физико-техническом институте, в группе Г. А. Смоленского, вели поиск магнитных сегнетоэлектриков. Обычный сегнетоэлектрик — это вещество, которое само по себе, без участия внешнего воздействия, создает и внутри себя, и снаружи электрическое поле, то есть в некотором смысле электрический аналог постоянного магнита. А магнитный сегнетоэлектрик — материал, в котором бы при отсутствии внешних полей наблюдались бы и намагниченность, и электрическая поляризация. Предполагалось замещение магнитными элементами ионов в уже известных сегнетоэлектриках, и первый «сегнетомагнетик» (или «мультиферроик», как теперь называют эти материалы) получился «сложносочиненным», это был твердый раствор (1–x)Pb(Fe2/3W1/3)O3 — xPb(Mg1/2W1/2)O3.
Сегнетомагнетики и мультиферроики: термины-химеры
На свое несчастье
Духов я призвал.
И. В. Гёте, «Ученик чародея»
Многие привычные слова представляют собой подобие мифологической химеры — животного с головой льва, туловищем козы и хвостом змеи. Так слово «автобус» получилось соединением частей слов «автомобиль» и «омнибус» (от лат. omnibus — всем, для всех). Похожим образом термин «сегнетомагнетик» составлен из двух слов «сегнетоэлектрик» и «ферромагнетик». Слово «сегнетоэлектрик» происходит от первого обнаруженного вещества, в котором существует поляризация в отсутствие электрического поля (спонтанная электрическая поляризация), — сегнетовой соли, названной по имени французского аптекаря Сеньета (Seignette). А есть и другое чудо — вещества, в которых при понижении температуры кристалл, оставаясь целым, разбивается на домены — области с разной ориентацией кристаллической решетки (это называется структурным фазовым переходом). Таким образом, слово «сегнетомагнетик» уже представляет собой довольно странный гибрид, но еще более «химеричен» термин «мультиферроик».
Химера античной мифологии
В англоязычной научной литературе названия всех этих трех классов веществ начинаются с приставки «ферро»: ferromagnetics, ferroelastics, ferroelectrics, хотя железо здесь ни при чем. Это не помешало, однако, в середине прошлого века японскому ученому Кейчиро Айдзу назвать все три класса общим термином «ferroics» — ферроики. Похожая история произошла в английском языке: кусочек от «омнибуса» перекочевал в «автобус», а потом bus стал самостоятельным словом, означающим кроме автобуса еще и канал передачи данных.
В случае ферроиков история имела продолжение: в начале девяностых годов прошлого века из бутылки был выпущен новый джинн — термин «мультиферроик» (от лат. multi — много) — для обозначения вещества, которое одновременно принадлежит хотя бы двум классам ферроиков. В начале нашего столетия, когда появились новые среды с магнитными и электрическими свойствами, это слово неожиданно быстро завоевало признание и вытеснило «сегнетомагнетик», так что сам создатель неологизма, швейцарский ученый Ганс Шмид, когда речь заходит о придуманном им термине, вспоминает стихотворение Гёте, отрывок из которого приведен в качестве эпиграфа.
Перемешать или прослоить?
Позже нашли и более простые соединения, а особенно интересным оказался феррит висмута BiFeO3 (рис. 2). Большинство его замечательных свойств — следствие отличий от идеальной кубической структуры. Вращение кислородных октаэдров (рис. 2а) приводит к тому, что в этом антиферромагнетике магнитные стрелки соседних ионов уже не строго противоположны, образуя угол меньше 180 градусов. В результате они не полностью компенсируют друг друга, и появляется общая намагниченность кристалла (такие материалы называют слабыми ферромагнетиками). Электрические и магнитоэлектрические свойства обусловлены смещением ионов вдоль главной диагонали куба, а также искажениями октаэдра (рис. 2б). Кристалл феррита висмута способен также растягиваться в лучах света (рис. 2в) и превращаться в полупроводниковый диод под действием электрического поля (рис. 2г). Последнее превращение происходит из-за кислородных вакансий — заряженных дефектов, которые изменяют тип проводимости.
Рис. 2. Кристаллическая структура феррита висмута: в центрах кубов находятся ионы железа, в вершинах — ионы висмута, в центрах граней — ионы кислорода: вращение кислородных октаэдров (а), смещение ионов вдоль диагонали куба и вызванное им искажение октаэдров — смещения ионов показаны стрелками (б), электрострикция в феррите висмута — растяжение образца под действием светового излучения, под стоваттной лампой относительное удлинение составляет около тысячной процента, что не так уж и мало для твердого тела (в), образование p-n перехода под действием электрического поля в результате перемещения кислородных вакансий (г)
Таких «высокотемпературных» магнитоэлектриков, как феррит висмута, совсем немного, едва ли больше десятка, да и те имеют существенный недостаток — заметную проводимость при комнатной температуре. Это сводит на нет главное достоинство магнитоэлектрического способа получения магнитного поля — при приложении электрического поля в таком веществе начнет протекать ток, а значит, расход энергии становится ощутимым. Поэтому в 70-х годах прошлого столетия были предприняты первые попытки создать искусственные композиционные магнитоэлектрические среды в виде смеси двух порошков (рис. 3а): магнитострикционные частички изменяли форму в магнитном поле, они воздействовали на частички пьезоэлектрика, а те, в свою очередь, при деформации электрически поляризовались.
Идея была замечательная, но эффект оказался малым и нестабильным. При перемешивании получались комки и сгустки, а образование каналов из проводящих магнитострикционных частиц приводило к «короткому замыканию» образца, а значит, и к отсутствию электрического напряжения. Тогда возникла идея «слоеного пирога» или сэндвича из магнитострикционного и пьезоэлектрического материалов, склеенных вместе (рис. 3б). Проводящие каналы теперь не образовывались, и магнитоэлектрический эффект стал в 50 раз больше, чем в Cr2O3. С помощью датчиков на сэндвич-структурах удавалось измерить магнитные поля в миллион раз меньшие, чем поле Земли, — такие создает наше сердце, перегоняя кровь по сосудам.
Когда структура влияет на свойства
Новый этап в создании композиционных материалов наступил с приходом современных технологий: теперь искусственные магнитоэлектрики изготавливают на чипах в виде пленок со столбчатыми наноструктурами (рис. 3в). Сэндвич-структуры в нанопленочном исполнении работают плохо — сцепление с подложкой-чипом не дает им свободно деформироваться, а столбики легко сжимаются и растягиваются в вертикальном направлении. Вдобавок такие структуры не надо было создавать специально, они «самоорганизуются» при одновременном осаждении на подложку двух веществ: магнитострикционного, например шпинели CoFe2O4, и пьезоэлектрического, например титаната бария BaTiO3 или феррита висмута BiFeO3. Изменяя кристаллографическую ориентацию подложки, можно выращивать как магнитострикционные столбики в пьезоэлектрической матрице, так и пьезоэлектрические столбики в магнитострикционной матрице (рис. 4).
Рис. 4. Строение нанокомпозита зависит от кристаллографической ориентации плоскости подложки: подложка с ориентацией(001) (а), подложка с ориентацией (111) (б); кубики соответствуют кристаллам пьезоэлектрика, октаэдры — кристаллам магнитострикционного материала
Что же вынуждает две фазы осаждаться таким образом? То же самое явление, которое заставляет капельку воды расплываться на чистом стекле и скатываться в шарик на поверхности, натертой воском, — поверхностное натяжение. Если подложка вырезана перпендикулярно кристаллографическому направлению [001] (то есть оси z системы координат), то вещество магнитострикционного материала не смачивает поверхность, собираясь в капли, которые потом вырастают в столбики, в то время как пьезоэлектрическая фаза смачивает подложку и обволакивает столбики, образуя матрицу. На подложке (111) всё происходит наоборот: внутри магнитострикционной матрицы растет столбчатая структура из пьезоэлектрика.
Когда характерные размеры наноструктур составляют несколько межатомных расстояний, фазы композита начинают влиять на внутреннее строение и свойства друг друга. Если слои титаната бария перемежать магнитным материалом с похожей кристаллической структурой, например манганита лантана с замещением кальцием La0.7Ca0.3MnO3, то получается искусственная магнитоэлектрическая среда: благодаря близкому соседству кристаллические структуры двух материалов подвергаются взаимным искажениям, что приводит к взаимодействию электрической и магнитной подсистем. То есть удалось не только создать наноструктурированный материал, но и осуществлять инженерию на атомном уровне, изменяя сами свойства веществ-компонентов.
А как же первоначальная идея Кюри о магнитоэлектрических молекулах? Ее можно реализовать в органических молекулярных нанокластерах Dy3, в которых магнитными атомами являются три атома диспрозия, образующие правильный треугольник (рис. 5а). В состоянии молекулы с наименьшей энергией (в основном состоянии) магнитные стрелки (моменты) ионов диспрозия ориентированы параллельно противолежащей стороне треугольника (рис. 5а). Если бы магнитных ионов было больше (как, например, в недавно синтезированном кластере Dy6), они бы образовали «карусель» из магнитных моментов (рис. 5б). Такое упорядочение называют «тороидным», поскольку круговой электромагнит можно создать, намотав провод на магнитный сердечник в форме бублика (тора). Структуры с тороидным упорядочением, следуя традиции обозначать любое упорядочение словом «ферро», называют «ферротороиками». Они обладают магнитоэлектрическим эффектом — приложение магнитного поля вызывает перераспределение магнитных моментов: число ионов, у которых магнитные моменты направлены по магнитному полю, возрастает. Смещение магнитных ионов влечет перераспределение зарядов, так что возникает электрическая поляризация. Однако с равной вероятностью реализуются и состояния молекулы, в которых магнитные моменты направлены по часовой стрелке, и состояния с направлением моментов против часовой стрелки, а в этих случаях магнитоэлектрический эффект будет противоположным. Так что остается проблема, как получать тороидные структуры с одним направлением вращения магнитных моментов.
Рис. 5. Органический молекулярный нанокластер на основе редкоземельных ионов: взаимная ориентация магнитных моментов катионов диспрозия (а); при тороидном упорядочении магнитных моментов во внешнем магнитном поле H помимо намагниченности наводится электрическая поляризация P (б); для сравнения — тороидальный электромагнит (в центре)
Из монитора память не получится
Идея Теллегена о композите, состоящем из магнитоэлектрических частиц, которые вращаются в жидкости, была реализована с появлением первой модели электронных чернил — гирикона (от греч. «вращающееся изображение»). Гирикон — полимерная среда, в которую внедрены двухцветные сферические частицы из полиэтилена, вращающиеся внутри полостей с жидкостью (рис. 6). Полусферы частицы отличались не только цветом, но и электрическим зарядом. Поэтому их можно было ориентировать, прикладывая электрическое поле, и на белом фоне появлялись черные буквы. Когда же в частицы ввели магнитные примеси, электрическое поле стало управлять намагниченностью системы. Однако на вращение уходило около секунды, поэтому возникла идея «омагнитить» не электронную бумагу, а главную составляющую другого типа дисплеев — жидкие кристаллы.
В жидких кристаллах нематиках (от греч. «нить») продолговатые молекулы располагаются вдоль одного направления (рис. 7а). Жидкокристаллические мониторы работают благодаря свойству молекул нематика ориентироваться вдоль поля (рис. 7б), но если примешать к жидкому кристаллу магнитные наностолбики, то они будут поворачиваться вместе с молекулами. Получился магнитный материал, управляемый с помощью электрического поля, причем он откликался на изменение электрического поля намного быстрее — частота переключения составляла килогерцы.
Рис. 7. Жидкий кристалл с магнитными наностолбиками: в отсутствие электрического напряжения (а), при включении напряжения (б)
Это уже быстрее, но гирикон и жидкокристаллическая ячейка ни по размерам, ни по быстродействию не могут соперничать с элементами полупроводниковых микросхем, а значит, для устройств магнитной памяти не годятся. Вместо жидкого кристалла в устройствах магнитной памяти между электродами предлагали помещать слой твердотельного магнитоэлектрика, однако из-за малочисленности высокотемпературных магнитоэлектриков и больших токов утечки магнитоэлектрическая память пока еще далека от реализации.
«Умная пыль» собирает энергию
Миниатюризация электронных устройств — путь к созданию беспроводных сенсорных сетей, состоящих из множества датчиков, способных собирать, обрабатывать информацию и обмениваться ею между собой. Такие структуры иногда называют «умная пыль». Наиболее очевидные области применения — экологический и медицинский мониторинг, охранные системы. Но датчикам нужно питание, а с ним проблемы: если датчик находится внутри объекта (например, во вращающейся детали или в теле человека), то провод к нему не подведешь, батарейки недостаточно миниатюрны и долговечны, а солнечные батареи в темноте бесполезны.
Для электропитания имплантатов в медицине, автономных датчиков, а также средств связи и мобильной электроники лучше использовать механическое движение или вибрации, например колебания упругой пластинки (в современных микромеханике и нанотехнологиях такие пластинки называют кантилеверами) из пьезоэлектрического материала (рис. 9а). Когда кантилевер, изготовленный из магнитоэлектрического композиционного материала, колеблется в магнитном поле Земли, магнитострикционный слой испытывает дополнительные деформации, которые передаются пьезоэлектрическому слою, и в результате амплитуда переменного напряжения достигает десятка вольт. Такое устройство предлагается использовать на подводных аппаратах и буях, где всегда есть океанские волны и магнитное поле Земли.
Проблема взаимосвязи магнитных и электрических явлений в твердом теле чрезвычайно многогранна, и в этой статье показаны лишь некоторые ее стороны. Эта область науки сейчас активно развивается, остается много непонятного, и неизвестные эффекты ждут своих первооткрывателей.