что означает спецификатор float

Форматированный ввод и вывод

Форматированный вывод

Сегодня мы рассмотрим две важные функции форматированного ввода и вывода. Устройство и работу этих функций полностью можно понять только после изучения работы с указателями и функций с переменным числом параметров. Но пользоваться этими функциями необходимо уже сейчас, так что некоторые моменты придётся пропустить.

Функция проходит по строке и заменяет первое вхождение % на первый аргумент, второе вхождение % на второй аргумент и т.д. Далее мы будем просто рассматривать список флагов и примеры использования.

Общий синтаксис спецификатора формата
%[флаги][ширина][.точность][длина]спецификатор
Спецификатор – это самый важный компонент. Он определяет тип переменной и способ её вывода.

Таб. 1 Спецификатор типа.

СпецификаторЧто хотим вывестиПример
d или iЦелое со знаком в в десятичном виде392
uЦелое без знака в десятичном виде7235
oБеззнаковое в восьмеричном виде657
xБеззнаковое целое в шестнадцатеричном виде7fa
XБеззнаковое целое в шестнадцатеричном виде, верхний регистр7FA
f или FЧисло с плавающей точкой3.4563745
eЭкспоненциальная форма для числа с плавающей точкой3.1234e+3
EЭкспоненциальная форма для числа с плавающей точкой, верхний регистр3.1234E+3
gКратчайшее из представлений форматов f и e3.12
GКратчайшее из представлений форматов F и E3.12
aШестнадцатеричное представление числа с плавающей точкой-0xc.90fep-2
AШестнадцатеричное представление числа с плавающей точкой, верхний регистр-0xc.90FEP-2
cБукваa
sСтрока (нуль-терминированный массив букв)Hello World
pАдрес указателяb8000000
nНичего не печатает. Аргументом должен быть указатель на signed int. По этому адресу будет сохранено количество букв, которое было выведено до встречи %n
%Два идущих друг за другом процента выводят знак процента%

Суб-спецификатор длины изменяет длину типа. В случае, если длина не совпадает с типом, по возможности происходит преобразование до нужного типа.

Таб. 5 Длина.

спецификаторы
Длинаd, iu o x Xf F e E g G a Acspn
(none)intunsigned intdoubleintchar*void*int*
hhsigned charunsigned charsigned char*
hshort intunsigned short intshort int*
llong intunsigned long intwint_twchar_t*long int*
lllong long intunsigned long long intlong long int*
jintmax_tuintmax_tintmax_t*
zsize_tsize_tsize_t*
tptrdiff_tptrdiff_tptrdiff_t*
Llong double

Форматированный ввод

Как и в printf, ширина, заданная символом * ожидает аргумента, который будт задавать ширину. Флаг длина совпадает с таким флагом функции printf.

Кроме функций scanf и printf есть ещё ряд функций, которые позволяют получать вводимые данные

Это не полный набор различных функций символьного ввода и вывода. Таких функций море, но очень многие из них небезопасны, поэтому перед использованием внимательно читайте документацию.

Непечатные символы

В си определён ряд символов, которые не выводятся на печать, но позволяют производить форматирование вывода. Эти символы можно задавать в виде численных значений, либо в виде эскейп-последовательностей: символа, экранированного обратным слешем.

Источник

Что нужно знать про арифметику с плавающей запятой

что означает спецификатор float. Смотреть фото что означает спецификатор float. Смотреть картинку что означает спецификатор float. Картинка про что означает спецификатор float. Фото что означает спецификатор float

В далекие времена, для IT-индустрии это 70-е годы прошлого века, ученые-математики (так раньше назывались программисты) сражались как Дон-Кихоты в неравном бою с компьютерами, которые тогда были размером с маленькие ветряные мельницы. Задачи ставились серьезные: поиск вражеских подлодок в океане по снимкам с орбиты, расчет баллистики ракет дальнего действия, и прочее. Для их решения компьютер должен оперировать действительными числами, которых, как известно, континуум, тогда как память конечна. Поэтому приходится отображать этот континуум на конечное множество нулей и единиц. В поисках компромисса между скоростью, размером и точностью представления ученые предложили числа с плавающей запятой (или плавающей точкой, если по-буржуйски).

Арифметика с плавающей запятой почему-то считается экзотической областью компьютерных наук, учитывая, что соответствующие типы данных присутствуют в каждом языке программирования. Я сам, если честно, никогда не придавал особого значения компьютерной арифметике, пока решая одну и ту же задачу на CPU и GPU получил разный результат. Оказалось, что в потайных углах этой области скрываются очень любопытные и странные явления: некоммутативность и неассоциативность арифметических операций, ноль со знаком, разность неравных чисел дает ноль, и прочее. Корни этого айсберга уходят глубоко в математику, а я под катом постараюсь обрисовать лишь то, что лежит на поверхности.

1. Основы

Множество целых чисел бесконечно, но мы всегда можем подобрать такое число бит, чтобы представить любое целое число, возникающее при решении конкретной задачи. Множество действительных чисел не только бесконечно, но еще и непрерывно, поэтому, сколько бы мы не взяли бит, мы неизбежно столкнемся с числами, которые не имеют точного представления. Числа с плавающей запятой — один из возможных способов предсталения действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений.

Число с плавающей запятой состоит из набора отдельных разрядов, условно разделенных на знак, экспоненту порядок и мантиссу. Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде:

что означает спецификатор float. Смотреть фото что означает спецификатор float. Смотреть картинку что означает спецификатор float. Картинка про что означает спецификатор float. Фото что означает спецификатор float

Математически это записывается так:

Основание определяет систему счисления разрядов. Математически доказано, что числа с плавающей запятой с базой B=2 (двоичное представление) наиболее устойчивы к ошибкам округления, поэтому на практике встречаются только базы 2 и, реже, 10. Для дальнейшего изложения будем всегда полагать B=2, и формула числа с плавающей запятой будет иметь вид:

Что такое мантисса и порядок? Мантисса – это целое число фиксированной длины, которое представляет старшие разряды действительного числа. Допустим наша мантисса состоит из трех бит (|M|=3). Возьмем, например, число «5», которое в двоичной системе будет равно 1012. Старший бит соответствует 2 2 =4, средний (который у нас равен нулю) 2 1 =2, а младший 2 0 =1. Порядок – это степень базы (двойки) старшего разряда. В нашем случае E=2. Такие числа удобно записывать в так называемом «научном» стандартном виде, например «1.01e+2». Сразу видно, что мантисса состоит из трех знаков, а порядок равен двум.

Допустим мы хотим получить дробное число, используя те же 3 бита мантиссы. Мы можем это сделать, если возьмем, скажем, E=1. Тогда наше число будет равно

2 = 10 (в двоичной системе) = 1.000e+1 = 0.100e+2 = 0.010e+3. (E=1, E=2, E=3 соответственно)

Обратите внимание, что одно и то же число имеет несколько представлений. Это не удобно для оборудования, т.к. нужно учитывать множественность представлния при сравнении чисел и при выполнении над ними арифметических операций. Кроме того, это не экономично, поскольку число представлений — конечное, а повторения уменьшают множество чисел, которые вообще могут быть представлены. Поэтому уже в самых первых машинах начали использовать трюк, делая первый бит мантиссы всегда положительным. Такое предаставление назвали нормализованным.

что означает спецификатор float. Смотреть фото что означает спецификатор float. Смотреть картинку что означает спецификатор float. Картинка про что означает спецификатор float. Фото что означает спецификатор float

Это экономит один бит, так как неявную единицу не нужно хранить в памяти, и обеспечивает уникальность представления числа. В нашем примере «2» имеет единственное нормализованное представление («1.000e+1»), а мантисса хранится в памяти как «000», т.к. старшая единица подразумевается неявно. Но в нормализованном представлении чисел возникает новая проблема — в такой форме невозможно представить ноль.

Строго говоря, нормализованное число имеет следующий вид:

Качество решения задач во многом зависит от выбора представления чисел с плавающей запятой. Мы плавно подошли к проблеме стандартизации такого представления.

2. Немного истории

В 60-е и 70-е годы не было единого стандарта представления чисел с плавающей запятой, способов округления, арифметических операций. В результате программы были крайне не портабельны. Но еще большей проблемой было то, что у разных компьютеров были свои «странности» и их нужно было знать и учитывать в программе. Например, разница двух не равных чисел возвращала ноль. В результате выражения «X=Y» и «X-Y=0» вступали в противоречие. Умельцы обходили эту проблему очень хитрыми трюками, например, делали присваивание «X=(X-X)+X» перед операциями умножения и деления, чтобы избежать проблем.

Инициатива создать единый стандарт для представления чисел с плавающей запятой подозрительно совпала с попытками в 1976 году компанией Intel разработать «лучшую» арифметику для новых сопроцессоров к 8086 и i432. За разработку взялись ученые киты в этой области, проф. Джон Палмер и Уильям Кэхэн. Последний в своем интервью высказал мнение, что серьезность, с которой Intel разрабатывала свою арифметику, заставила другие компании объединиться и начать процесс стандартизации.

Все были настроены серьезно, ведь очень выгодно продвинуть свою архитектуру и сделать ее стандартной. Свои предложения представили компании DEC, National Superconductor, Zilog, Motorola. Производители мейнфреймов Cray и IBM наблюдали со стороны. Компания Intel, разумеется, тоже представила свою новую арифметику. Авторами предложенной спецификации стали Уильям Кэхэн, Джероми Кунен и Гарольд Стоун и их предложение сразу прозвали «K-C-S».

Практически сразу же были отброшены все предложения, кроме двух: VAX от DEC и «K-C-S» от Intel. Спецификация VAX была значительно проще, уже была реализована в компьютерах PDP-11, и было понятно, как на ней получить максимальную производительность. С другой стороны в «K-C-S» содержалось много полезной функциональности, такой как «специальные» и «денормализованные» числа (подробности ниже).

В «K-C-S» все арифметические алгоритмы заданы строго и требуется, чтобы в реализации результат с ними совпадал. Это позволяет выводить строгие выкладки в рамках этой спецификации. Если раньше математик решал задачу численными методами и доказывал свойства решения, не было никакой гарантии, что эти свойства сохранятся в программе. Строгость арифметики «K-C-S» сделала возможным доказательство теорем, опираясь на арифметику с плавающей запятой.

Компания DEC сделала все, чтобы ее спецификацию сделали стандартом. Она даже заручилась поддержкой некоторых авторитетных ученых в том, что арифметика «K-C-S» в принципе не может достигнуть такой же производительности, как у DEC. Ирония в том, что Intel знала, как сделать свою спецификацию такой же производительной, но эти хитрости были коммерческой тайной. Если бы Intel не уступила и не открыла часть секретов, она бы не смогла сдержать натиск DEC.

Подробнее о баталиях при стандартизации смотрите в интервью профессора Кэхэна, а мы рассмотрим, как выглядит представление чисел с плавающей запятой сейчас.

3. Представление чисел с плавающей запятой сегодня

Разработчики «K-C-S» победили и теперь их детище воплотилось в стандарт IEEE754. Числа с плавающей запятой в нем представлены в виде знака (s), мантиссы (M) и порядка (E) следующим образом:

Замечание. В новом стандарте IEE754-2008 кроме чисел с основанием 2 присутствуют числа с основанием 10, так называемые десятичные (decimal) числа с плавающей запятой.

Чтобы не загромождать читателя чрезмерной информацией, которую можно найти в Википедии, рассмотрим только один тип данных, с одинарной точностью (float). Числа с половинной, двойной и расширенной точностью обладают теми же особенностями, но имеют другой диапазон порядка и мантиссы. В числах одинарной точности (float/single) порядок состоит из 8 бит, а мантисса – из 23. Эффективный порядок определяется как E-127. Например, число 0,15625 будет записано в памяти как

что означает спецификатор float. Смотреть фото что означает спецификатор float. Смотреть картинку что означает спецификатор float. Картинка про что означает спецификатор float. Фото что означает спецификатор float
Рисунок взят из Википедии

3.1 Специальные числа: ноль, бесконечность и неопределенность

Неопределенность или NaN (от not a number) – это представление, придуманное для того, чтобы арифметическая операция могла всегда вернуть какое-то не бессмысленное значение. В IEEE754 NaN представлен как число, в котором E=Emax+1, а мантисса не нулевая. Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.

Вернемся к примеру. Наш Emin=-1. Введем новое значение порядка, E=-2, при котором числа являются денормализованными. В результате получаем новое представление чисел:

что означает спецификатор float. Смотреть фото что означает спецификатор float. Смотреть картинку что означает спецификатор float. Картинка про что означает спецификатор float. Фото что означает спецификатор float

Интервал от 0 до 0,5 заполняют денормализованные числа, что дает возможность не проваливаться в 0 рассмотренных выше примерах (0,5-0,25 и 1,5-1,25). Это сделало представление более устойчиво к ошибкам округления для чисел, близких к нулю.

Но роскошь использования денормализованного представления чисел в процессоре не дается бесплатно. Из-за того, что такие числа нужно обрабатывать по-другому во всех арифметических операциях, трудно сделать работу в такой арифметике эффективной. Это накладывает дополнительные сложности при реализации АЛУ в процессоре. И хоть денормализованные числа очень полезны, они не являются панацеей и за округлением до нуля все равно нужно следить. Поэтому эта функциональность стала камнем преткновения при разработке стандарта и встретила самое сильное сопротивление.

3.4 Очередность чисел в IEEE754

Одна из удивительных особенностей представления чисел в формате IEEE754 состоит в том, что порядок и мантисса расположены друг за другом таким образом, что вместе образуют последовательность целых чисел для которых выполняется:

4.2 Неассоциативность арифметических операций

В арифметике с плавающей запятой правило (a*b)*c = a*(b*c) не выполняется для любых арифметических операций. Например,

Допустим у нас есть программа суммирования чисел.

Некоторые компиляторы по умолчанию могут переписать код для использования нескольких АЛУ одновременно (будем считать, что n делится на 2):

Так как операции суммирования не ассоциативны, эти две программы могут выдать различный результат.

4.3 Числовые константы

Помните, что не все десятичные числа имеют двоичное представление с плавающей запятой. Например, число «0,2» будет представлено как «0,200000003» в одинарной точности. Соответственно, «0,2 + 0,2 ≈ 0,4». Абсолютная погрешность в отдельном
случае может и не высока, но если использовать такую константу в цикле, можем получить накопленную погрешность.

4.4 Выбор минимума из двух значений
4.5 Сравнение чисел

Очень распространенная ошибка при работе с float-ами возникает при проверке на равенство. Например,

Ошибка здесь, во-первых, в том, что 0,2 не имеет точного двоичного представления, а во-вторых 0,2 – это константа двойной точности, а переменная fValue – одинарной, и никакой гарантии о поведении этого сравнения нет.

Лучший, но все равно ошибочный способ, это сравнивать разницу с допустимой абсолютной погрешностью:

Недостаток такого подхода в том, что погрешность представления числа увеличивается с ростом самого этого числа. Так, если программа ожидает «10000», то приведенное равенство не будет выполняться для ближайшего соседнего числа (10000,000977). Это особенно актуально, если в программе имеется преобразование из одинарной точности в двойную.

Выбрать правильную процедуру сравнения сложно и заинтересованных читателей я отсылаю к статье Брюса Доусона. В ней предлагается сравнивать числа с плавающей запятой преобразованием к целочисленной переменной. Это — лучший, хотя и не портабельный способ:

5. Проверка полноты поддержки IEE754

Думаете, что если процессоры полностью соответствуют стандарту IEEE754, то любая программа, использующая стандартные типы данных (такие как float/double в Си), будет выдавать один и тот же результат на разных компьютерах? Ошибаетесь. На портабельность и соответствие стандарту влияет компилятор и опции оптимизации. Уильям Кэхэн написал программу на Си (есть версия и для Фортрана), которая позволяет проверить удовлетворяет ли связка «архитектура+компилятор+опции» IEEE754. Называется она «Floating point paranoia» и ее исходные тексты доступны для скачивания. Аналогичная программа доступна для GPU. Так, например, компилятор Intel (icc) по умолчанию использует «расслабленную» модель IEEE754, и в результате не все тесты выполняются. Опция «-fp-model precise» позволяет компилировать программу с точным соответствием стандарту. В компиляторе GCC есть опция «-ffast-math», использование которой приводит к несоответствию IEEE754.

Заключение

Напоследок поучительная история. Когда я работал над тестовым проектом на GPU, у меня была последовательная и параллельная версия одной программы. Сравнив время выполнения, я был очень обрадован, так как получил ускорение в 300 раз. Но позже оказалось, что вычисления на GPU «разваливались» и обращались в NaN, а работа с ними в GPU была быстрее, чем с обычными числами. Интересно было другое — одна и та же программа на эмуляторе GPU (на CPU) выдавала корректный результат, а на самом GPU – нет. Позже оказалось, что проблема была в том, что этот GPU не поддерживал полностью стандарт IEEE754 и прямой подход не сработал.

Сейчас арифметика с плавающей запятой почти совершенна. Практически всегда наивный подход сработает, и программа, не учитывающая все ее особенности, выдаст правильный результат, а описанные подводные камни касаются только экзотических случаев. Но нужно всегда оставаться бдительным: в таком вопросе как компьютерная математика легко наступить на грабли.

Источник

Тип float

Числа с плавающей запятой используют формат IEEE (Института инженеров по электротехнике и электронике). Значения с одиночной точностью и типом float имеют 4 байта, состоят из бита знака, 8-разрядной двоичной экспоненты excess-127 и 23-битной мантиссы. Мантисса представляет число от 1,0 до 2,0. Поскольку бит высокого порядка мантиссы всегда равен 1, он не сохраняется в числе. Это представление обеспечивает для типа float диапазон примерно от 3,4E–38 до 3,4E+38.

Можно объявить переменные в качестве типа float или double в зависимости от нужд приложения. Основные различия между двумя типами значения заключаются в представляемой ими значимости, требуемых ресурсах хранения и диапазоне. В следующей таблице показана связь между значимостью и требованиями к хранению.

Типы с плавающей запятой

Переменные с плавающей запятой представлены мантиссой, которая содержит значение числа, и экспонентой, которая содержит порядок возрастания числа.

В следующей таблице показано количество битов, выделенных мантиссе и экспоненте для каждого типа с плавающей запятой. Наиболее значимый бит любого типа float или double — всегда бит знака. Если он равен 1, число считается отрицательным; в противном случае — положительным.

Длина экспонент и мантисс

TypeДлина экспонентыДлина мантиссы
float8 бит23 бита
double11 бит52 бита

Поскольку экспоненты хранятся в форме без знака, экспоненты смещены на половину своего возможного значения. Для типа float смещение составляет 127; для типа double это 1023. Можно вычислить фактическое значение экспоненты, вычтя значение смещения из значения экспоненты.

Мантисса хранится в виде бинарной доли, которая больше или равна 1 и меньше 2. Для типов float и double в мантиссе подразумевается наличие начального 1 в наиболее значимой битовой позиции, поэтому фактически длина мантисс составляет 24 и 53 бит соответственно, даже если наиболее значимый бит никогда не хранится в памяти.

Вместо только что описанного метода хранения пакет значений с плавающей запятой может хранить двоичные числа с плавающей запятой как денормализованные числа. Денормализованные числа — это ненулевые числа с плавающей запятой и зарезервированными значениями экспонент, в которых наиболее значимый бит мантиссы равен 0. Используя денормализованный формат, можно расширить диапазон числа с плавающей запятой в ущерб точности. Невозможно контролировать, в какой форме будет представлено число с плавающей запятой — нормализованной или денормализованной. Пакет значений с плавающей запятой определяет представление. В пакете значений с плавающей запятой никогда не используется денормализованная форма. Исключение составляют случаи, когда экспонента становится меньше, чем минимальное значение, которое может быть представлено в нормализованной форме.

В следующей таблице показаны минимальное и максимальное значения, которое можно сохранить в переменных каждого типа с плавающей запятой. Значения, указанные в этой таблице, применяются только к нормализованным числам с плавающей запятой; денормализованные числа с плавающей запятой имеют меньшее минимальное значение. Обратите внимание, что номера, сохраненные в регистрах 80x87, всегда представлены в 80-разрядной нормализованной форме; при сохранении в 32- или 64-разрядных переменных с плавающей запятой числа могут быть представлены только в ненормализованной форме (переменные типов float и long).

Диапазон типов с плавающей запятой

TypeМинимальное значениеМаксимальное значение
плавающее1,175494351 E – 383,402823466 E + 38
double2,2250738585072014 E – 3081,7976931348623158 E + 308

Если точность менее важна, чем размер хранимых данных, имеет смысл использовать тип float для переменных с плавающей запятой. И наоборот, если точность — наиболее важный критерий, используйте тип double.

Уровень переменных с плавающей запятой можно повысить до типа большей значимости (преобразование типа float в тип double). Повышение уровня часто происходит при выполнении арифметических действий с переменными плавающего типа. Это арифметическое действие всегда выполняется на том же уровне точности, что и переменная с наивысшим уровнем точности. Например, проанализируйте объявления следующих типов.

В следующем примере (с использованием объявлений из предыдущего примера) арифметическая операция выполняется на уровне точности переменной типа float (32-разрядной). Уровень результата затем повышается до уровня double.

Источник

Урок №33. Типы данных с плавающей точкой: float, double и long double

Обновл. 11 Сен 2021 |

Типы данных с плавающей точкой

Есть три типа данных с плавающей точкой: float, double и long double. Язык C++ определяет только их минимальный размер (как и с целочисленными типами). Типы данных с плавающей точкой всегда являются signed (т.е. могут хранить как положительные, так и отрицательные числа).

Тип Минимальный размер Типичный размер
Тип данных с плавающей точкойfloat4 байта4 байта
double8 байт8 байт
long double8 байт8, 12 или 16 байт

Объявление переменных разных типов данных с плавающей точкой:

Если нужно использовать целое число с переменной типа с плавающей точкой, то тогда после этого числа нужно поставить разделительную точку и нуль. Это позволяет различать переменные целочисленных типов от переменных типов с плавающей запятой:

Обратите внимание, литералы типа с плавающей точкой по умолчанию относятся к типу double. f в конце числа означает тип float.

Экспоненциальная запись

Обычно, в экспоненциальной записи, в целой части находится только одна цифра, все остальные пишутся после разделительной точки (в дробной части).

На практике экспоненциальная запись может использоваться в операциях присваивания следующим образом:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *