горизонт уиллера что это

Что такое горизонт событий, или как вырваться из черной дыры

Elena Foer

Изучением черных дыр всерьез физики занялись не так давно — хотя сама концепция их существования появилась еще в позапрошлом веке. Но идея присутствия где-то в космосе таких объектов казалась настолько фантастической и недоказуемой, что практически не рассматривалась всерьез. В новом выпуске рубрики «Просто о сложном» — рассказ об истории открытия «застывших звезд» и о том, что происходит с пространством и временем на границах черной дыры.

Долгая история неверия

В 1783 году священник из английской деревни Торнхилл Джон Митчелл представил в журнал «Философские труды Лондонского Королевского общества» свою статью. В ней он писал, что достаточно массивная и компактная звезда будет иметь столь сильное гравитационное поле, что свет не сможет уйти от нее далеко — он будет затянут обратно за счет гравитационного притяжения. Митчелл считал, что таких объектов в космосе может быть очень много, но увидеть их невозможно — так как их свет поглощается ими же. Тем не менее теоретически их гравитационное притяжение можно обнаружить. Статья не вызвала ажиотажа в научном сообществе и прошла практически незамеченной.

Спустя несколько лет французский ученый Пьер-Симон Лаплас, незнакомый с работой Митчелла, выдвинул схожую гипотезу. Он опубликовал ее в своем труде «Система мира», однако после второго издания теория из книги исчезла — по всей видимости, Лаплас решил, что о такой дурацкой идее и говорить не стоит.

Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды.

А вот в XIX веке ученым уже не могла прийти в голову мысль о невидимых звездах. Все дело в том, что ньютоновское убеждение относительно того, что свет состоит из частиц, вышло из моды. Ученые пришли к выводу, что концепция, согласно которой свет — это волна, лучше описывает явления окружающего мира. О том, как гравитация действует на волны, ничего известно не было, стало быть, и рассуждения о небесных объектах, «затягивающих» собственный свет, пришлось забыть.

Вновь вспомнили о них только в XX веке. В 1916 году, практически сразу после публикации Эйнштейном общей теории относительности, Карл Шварцшильд описал «застывшую звезду», как тогда называли такие объекты, не рассматривая процесс ее зарождения, а в 1939 этот недостающий элемент в теорию добавили Роберт Оппенгеймер и Хартланд Снайдер. И только 1969 году американский физик Джон Уилер придумал термин «черная дыра» (Уилер вообще был романтиком, и второй придуманный им термин, «кротовая нора», еще более любим фантастами).

Загробная жизнь звезды

Жизненный цикл звезды чем-то похож на человеческий — она рождается и умирает. Вначале огромное облако газа (преимущественно водорода) в космосе начинает сжиматься под воздействием собственной гравитации, его молекулы все чаще сталкиваются друг с другом, и их скорости увеличиваются. Газ разогревается, и при определенной температуре возникает реакция термоядерного синтеза, в результате которой образуется гелий. В ходе реакции выделяется тепло и излучается свет. Так возникает звезда. Тепло создает дополнительное давление, которое уравновешивает гравитационное притяжение, и звезда перестает сжиматься — в стабильном состоянии она может существовать более миллиона лет. Но рано или поздно запасы реагирующего водорода у звезды иссякают, и она начинает остывать и сжиматься.

Тут сравнение с человеческой жизнью заканчивается, потому что дальнейшая судьба светила зависит от его массы. Из небольших звезд получаются белые карлики, объекты с плотностью в сотни тонн на кубический сантиметр. В космосе их обнаружено довольно много, и наше Солнце со временем пополнит их ряды. Из более крупных светил образуются нейтронные звезды. Их размер куда меньше, чем у белых карликов, зато плотность составляет сотни миллионов тонн на кубический сантиметр.

И, наконец, если масса звезды достаточно велика, то образующаяся нейтронная звезда под воздействием гравитации сжимается все сильнее и сильнее, пока не станет черной дырой.

Выхода нет

Одним из важнейших достижений Эйнштейна было открытие природы гравитации. Ученый показал, что она, по сути, является искривлением пространства. Под воздействием массивных объектов оно «проминается», как натянутая эластичная ткань, на которую положили тяжелый предмет. Продолжая это сравнение, можно сказать, что точно так же в виде тяжелого шара можно представить и Солнце, а Земля, будучи значительно более мелким шариком, не притягивается к нему, а всего лишь вращается в получившейся воронке (с той только разницей, что настоящий шарик со временем скатился бы вниз).

В самой же черной дыре искривление пространства-времени становится бесконечным — такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.

Так же можно представить и рождение черной дыры — шар на натянутой эластичной ткани становится все более маленьким и плотным, и ткань все сильнее прогибается под его весом, пока наконец он не становится настолько маленьким, что она просто смыкается над ним и он пропадает из поля зрения. Примерно так происходит и в реальности: пространство-время вокруг звезды свертывается, и она пропадает из Вселенной, оставляя в ней лишь сильно искривленную область пространства-времени. В самой же черной дыре искривление пространства-времени становится бесконечным — такое состояние физики называют сингулярностью, и в нем нет ни пространства, ни времени в нашем понимании.

Из-за происходящего искривления лучи света, идущие от звезды, меняют свои траектории. Если представить себе эти лучи как конусы, вершина которых — у звезды, а «подошва» — это круг расходящегося света, то можно сказать, что в процессе коллапса эти конусы постепенно все больше наклоняются внутрь, к звезде. Наблюдателю, смотрящему на этот процесс, будет казаться, что свечение становится все более тусклым и красным (это потому что красный свет имеет наибольшую длину волны). В конце концов искривление (то есть гравитационное поле) станет настолько сильным, что ни один луч света не сможет выйти наружу. Согласно теории относительности, ничто не может двигаться быстрее света, и это означает, что начиная с этого момента ничто не может выбраться за пределы этого гравитационного поля. Эту область пространства, из которой нет выхода, и называют черной дырой. Ее граница определяется по траектории тех световых лучей, которые первыми потеряли возможность выйти наружу. Она называется горизонтом событий черной дыры — так же как, глядя из окна, мы не видим, что находится за горизонтом, так и условный наблюдатель не может понять, что происходит внутри границ невидимой мертвой звезды.

На самом деле все не так

Убеждение, что ничто не может покинуть черную дыру, было незыблемым до 70-х годов XX века. А в 1974 году Стивен Хокинг предположил, что черные дыры в результате квантовых процессов все же излучают разнообразные элементарные частицы, преимущественно фотоны. В 2010-х годах разные группы ученых в лабораторных условиях подтвердили его предположение. При этом в природе такого излучения пока не было обнаружено, как, впрочем, и самих черных дыр — Нобелевская премия за их открытие еще ждет своего счастливчика.

Мы ежедневно сталкиваемся с fake facts, заблуждаемся и искажаем картину мира, а с некоторыми ложными установками живем всю жизнь. Пора это исправить. В нашем научно-просветительском проекте #НАДОРАЗОБРАТЬСЯ рассказываем, как защитить себя от фейков, научиться их распознавать, и развеиваем самые распространенные мифы об окружающем нас мире.

Источник

Спросите Итана: как должен выглядеть горизонт событий чёрной дыры?

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Изображение чёрной дыры. Несмотря на её тёмный цвет, считается, что все чёрные дыры были сформированы из обычной материи, но подобные иллюстрации не совсем точны

В апреле 2017 телескопы всего мира одновременно собрали данные по центральной чёрной дыре Млечного Пути. Из всех известных во вселенной ЧД та, что находится в центре Галактики — Стрелец A* — особенная. С нашей точки зрения её горизонт событий крупнейший из всех доступных нам ЧД. Он настолько большой, что телескопы, расположенные в разных местах Земли, должны были бы его увидеть, если бы посмотрели на него все одновременно. И хотя на комбинирование и анализ данных, полученных с разных телескопов, уйдут месяцы, к концу 2017 года мы должны получить наше первое изображение горизонта событий. Так как он должен выглядеть? Такой вопрос задаёт один из наших читателей, запутавшийся в иллюстрациях:

Разве горизонт событий не должен полностью окружать чёрную дыру на манер яичной скорлупы? Все художники рисуют чёрные дыры в виде разрезанных яиц, сваренных вкрутую. Почему горизонт событий не окружает чёрную дыру полностью?

Конечно, в интернете можно найти иллюстрации разного рода. Но какие из них правильные?

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Рисунок с простым чёрным кругом и кольцом вокруг него — чрезмерно упрощённое изображние горизонта ЧД

Самый старый вид иллюстраций — простой чёрный диск, закрывающий собой весь свет позади него. Это имеет смысл, если вспомнить, что собой представляет ЧД: по сути, это собранная в одном месте масса настолько большой величины и настолько компактная, что скорость убегания с её поверхности превышает скорость света. Поскольку ничто не может двигаться так быстро, даже передача взаимодействий между частицами внутри ЧД, внутри ЧД схлопывается до сингулярности, а вокруг ЧД образуется горизонт событий. Из этого сферического участка космоса свет не может убежать, поэтому он и должен выглядеть с любой перспективы, как чёрный круг, наложенный на фон Вселенной.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
ЧД — не просто масса над изолированным фоном, она оказывает гравитационные эффекты, растягивающие, увеличивающие и искажающие свет из-за гравитационного линзирования.

Но это ещё не вся история. Из-за гравитации ЧД увеличивают и искажают идущий с обратной стороны свет из-за эффекта гравитационного линзирования. Существует более точные и детальные иллюстрации внешнего вида ЧД, и у неё даже есть горизонт событий, размер которого правильно сопоставлен с кривизной пространства согласно ОТО.

К сожалению, и эти иллюстрации не лишены недостатков: они не учитывают материал, находящийся перед ЧД и аккреционный диск вокруг ЧД. Некоторые изображения включают и это.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Изображение активной ЧД, занятой аккрецией материи и ускорением её части в виде двух перпендикулярных струй, может описать ЧД в центре нашей Галактики правильно с многих точек зрения.

Из-за огромных гравитационных эффектов чёрные дыры формируют аккреционные диски в присутствии других источников материи. Астероиды, газовые облака, целые звёзды могут быть разорваны на части приливными силами, исходящими от таких массивных объектов, как чёрные дыры. Из-за сохранения углового момента и из-за столкновений между различными падающими в ЧД частицами, вокруг неё появиялется дискообразный объект, который разогревается и излучает. Во внутренних регионах частицы периодически падают в ЧД, что увеличивает её массу, а материал, находящийся перед ней, закрывает часть сферы, которую вы бы иначе видели.

Но сам по себе горизонт событий непрозрачен, и материю за ним вы видеть не должны.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
У чёрной дыры в фильме Interstellar достаточно точно показан горизонт событий для особого класса вращающихся ЧД

Вас может удивить, что в голливудском фильме Interstellar ЧД изображена точнее, чем на многих профессиональных изображениях, созданных в НАСА или для него. Но даже среди профессионалов полно неправильных представлений о ЧД. ЧД не засасывают материю внутрь, а лишь оказывают гравитационное воздействие. ЧД не раздирают предметы из-за какой-то дополнительной силы — это делают простые приливные силы, когда одна часть падающего объекта оказывается ближе к центру, чем другая. И, что самое важное, ЧД редко существуют в «голом» состоянии, и часто находятся вблизи другой материи, как та, что существует в центре нашей Галактики.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Композитное изображение ЧД Стрелец А* в центре нашей Галактики, составленное из рентгеновских и инфракрасных лучей. Она обладает массой в 4 миллиона солнечных, и окружена горячим газом, излучающим в рентгеновском диапазоне

Памятуя обо всём этом, вспомним, что же это за изображения варёных яиц? Помните, что саму ЧД изобразить нельзя, поскольку она не испускает свет. Мы можем только наблюдать в определённом диапазоне длин волн и видеть сочетание света, обходящего ЧД сзади, изгибающегося вокруг и перед ней. И получающийся сигнал действительно будет напоминать варёное вкрутую яйцо, разрезанное пополам.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Некоторые из возможных сигналов горизонта событий ЧД, полученные в симуляциях проекта «Телескоп горизонта событий»

Всё дело в том, что именно мы фотографируем. Мы не можем наблюдать в рентгеновском диапазоне, ибо таких фотонов слишком мало. Мы не можем наблюдать в видимом свете, поскольку центр галактики для него непрозрачен. И мы не можем наблюдать в инфракрасном свете, поскольку атмосфера блокирует такие лучи. Но мы можем наблюдать в радиодиапазоне, и делать это по всему миру, одновременно, чтобы получить наилучшее из возможных разрешений.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Части «Телескопа горизонта событий» из одного полушария

Угловой размер ЧД в центре Галактики равен примерно 37 угловых микросекунд, а разрешение телескопа равно 15 угловых микросекунд, поэтому у нас должно получиться его увидеть! Большая часть радиочастотного излучения исходит из заряженных частиц материи, ускоряющихся вокруг ЧД. Мы не знаем, как будет ориентирован диск, будет ли там несколько дисков, будет ли это больше похоже на рой пчёл или на компактный диск. Мы также не знаем, предпочтёт ли он одну «сторону» ЧД, с нашей точки зрения, другой.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Пять различных симуляций в ОТО с использованием магнитогидродинамической модели аккреционного диска ЧД, и то, как будет выглядеть полученный сигнал

Мы ожидаем найти реальный горизонт событий, с определённым размером, блокирующий весь идущий из-за него свет. Мы также ожидаем наличие какого-либо сигнала, расположенного перед ним, неровность этого сигнала из-за беспорядка вокруг ЧД, и что ориентация диска относительно ЧД определит, что именно вы сможем увидеть.

Одна часть будет ярче, когда диск вращается в нашу сторону. Другая сторона тусклее, когда диск вращается от нас. Контур горизонта событий также может быть видимым из-за гравитационного линзирования. Что ещё важнее, расположение диска к нам ребром или плоскостью очень сильно будет влиять на характер полученного сигнала, как видно в первом и третьем квадратах рисунка ниже.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это
Расположение диска к нам ребром (два правых квадрата) или плоскостью (два левых квадрата) очень сильно будет влиять на то, какую ЧД мы увидим

Мы можем проверить и другие эффекты, а именно:

• обладает ли ЧД размером, предсказанным ОТО,
• круглый ли горизонт событий (как предсказано), или вытянутый, или сплющенный у полюсов,
• простирается ли радиоизлучение дальше чем мы думаем,

или есть ещё какие-то отклонения от ожидаемого поведения. Это новая ступень физики, и мы находимся на грани её прямой проверки. Одно ясно: неважно, что увидит «Телескоп горизонта событий», мы обязательно узнаем что-то новое и прекрасное об одних из самых экстремальных объектов и условий во Вселенной!

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Источник

Суть чёрных дыр: сингулярность, горизонт событий, спагеттификация

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

О чёрных дырах ходит множество самых невообразимых слухов, легенд и теорий. Неудивительно: ведь заглянуть в них напрямую и проверить свои догадки мы не можем — запрещают законы природы. Учёные строят такие теории, что впору удивляться даже фантастам: здесь и области сингулярности, в которых физика перестаёт работать, и порталы в другие измерения… А ведь начиналось всё совершенно обыденно: три века назад естествоиспытатели решили наконец разобраться, что же такое земное притяжение.

Как известно, первую физико-математическую теорию гравитации сформулировал в 1687 году Исаак Ньютон. Введённый им закон всемирного тяготения описывал, как тела взаимодействуют друг с другом, но не объяснял природу этого взаимодействия. Сам учёный признавал ограниченность своей теории, написав буквально следующее: «Причину же этих свойств силы тяготения я до сих пор не мог вывести из явлений; гипотез же я не измышляю».

Тем не менее из закона Ньютона при желании можно вывести необычные следствия. Например, весьма экзотическую гипотезу высказал в 1784 году английский естествоиспытатель и теолог Джон Мичелл. В письме к Королевскому обществу, которое в то время было влиятельнейшей научной организацией мира, он приводил расчёт «тёмного солнца» — звезды с силой притяжения, не позволяющей её свету вырваться вовне. Оказалось, что для превращения в подобный объект наше Солнце должно быть в пятьсот раз больше. Далее Мичелл предположил: поскольку массивных звёзд в космосе достаточно, среди них должны быть и «тёмные», но, по понятным причинам, увидеть их мы не можем. Позднее французский математик Пьер-Симон Лаплас популяризировал идею Мичелла, включив её в свой фундаментальный труд «Изложение системы мира» (Exposition du Système du Monde, 1796).

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Окрестности сверхмассивной чёрной дыры, какие обычно располагаются в сердце галактик (в представлении художника, ESO, CC BY 4.0)

Хотя у ньютоновской теории гравитации были оппоненты, со временем она стала общепринятой, поскольку подтверждалась наблюдениями и точнейшими измерениями. Доработать и расширить её потребовалось в начале ХХ века, когда выяснилось, что она не работает, если тело движется с релятивистскими (то есть сопоставимыми со скоростью света) скоростями. К концу 1915 года Альберт Эйнштейн сформулировал новую теорию гравитации, получившую название общей теории относительности (ОТО). Он предположил, что действие гравитации не связано ни с какими неведомыми силами или частицами, а обусловлено геометрическими свойствами самогó пространственно-временного континуума: любая масса искривляет его, создавая вокруг себя своего рода «воронку», а движение тел относительно друг друга обусловлено только формой и глубиной этих «воронок».

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Концепция Эйнштейна казалась настолько революционной, что научный мир не сразу её принял. Одним из доказательств в пользу ОТО могло бы стать обнаружение «замороженных звёзд» — сферических сверхмассивных областей пространства, которые при помощи уравнений Эйнштейна описал Карл Шварцшильд. В отличие от идеи Мичелла, в новой модели до нуля замедлялась не скорость света, но само течение времени. Шварцшильд ввёл понятие гравитационного радиуса, определяющего размер, необходимый для «замерзания» звезды.

Радиус Шварцшильда можно рассчитать для любого тела: например, для Солнца он составляет 3 км, для Земли — около 9 мм. Если б существовала физическая возможность сжать наше светило или планету до указанных размеров без мгновенного взрыва с переходом материи в энергию, то они превратились бы в «замороженные», а течение времени на их поверхности сразу остановилось бы. С другой стороны, если масса исходного объекта значительна, то незачем сжимать его до предельно малых размеров: скажем, «замороженная звезда» массой в миллиард солнечных будет иметь плотность воды.

Небесные дыры

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Другие физики, среди которых были Фриц Цвикки и Лев Ландау, в серии работ показали, что нейтронные звёзды образуются в результате взрыва сверхновых, но не всегда: самые массивные из них переходят в иное состояние.

Но какое? В 1939 году Роберт Оппенгеймер (один из будущих создателей американской атомной бомбы) и Хартланд Снайдер на упрощённой математической модели показали, что звезда при коллапсе стягивается к радиусу Шварцшильда и даже преодолевает его! Вывод выглядел столь фантастическим, что учёные в то время не осмелились сделать следующий шаг и заявить: «замороженные звёзды» действительно существуют.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Чёрная дыра звёздной массы в представлении художника

Дальнейшие исследования и расчёты тем не менее показали: ничего невероятного в этом нет. Массивные звёзды во всех случаях превращаются в «замороженные», сила тяготения вблизи которых стремится к бесконечности, а время останавливается. И, главное, таких объектов во Вселенной должно быть очень много, ведь её эволюция началась не вчера. Теперь астрономам предстояло подтвердить или опровергнуть теоретические выкладки.

Постепенно определилась и терминология. Установлено, что первым в начале 1960-х годов «замороженную звезду» стал называть «чёрной дырой» американец Роберт Дик, в своих лекциях сравнивавший этот гипотетический объект с легендарной «Калькуттской чёрной дырой» — маленькой тюремной камерой форта Уильям, где в июне 1756 года погибли десятки пленных англичан.

Новый термин понравился прежде всего журналистам: с 1963 года он стал постоянно появляться на страницах журналов Life и Science News. В студенческой среде новое название прижилось после того, как в январе 1964 года Энн Юинг выступила на конференции Американской ассоциации содействия науке с докладом «Чёрные дыры в космосе». Несмотря на это, авторство термина ошибочно приписывают американскому физику Джону Уилеру, который употреблял его в своих лекциях начиная с декабря 1967 года.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Долгое время оставалось популярным предположение, что через чёрные дыры можно проникнуть в иные вселенные или эпохи

Разумеется, чёрными дырами заинтересовались и фантасты. Необычный космический объект, гравитация которого столь велика, что останавливает время, будоражил воображение. В романе «Шпага Рианнона» (1949), ныне считающемся классикой, знаменитая Ли Брэкетт описала «пузырь тьмы», через который персонаж отправляется в прошлое Марса:

Этот пузырь с пульсирующей чернотой — до чего он похож на черноту тех густо-чёрных пятен, находящихся далеко-далеко на краю Галактики, которые некоторые учёные считают отверстиями в саму бесконечность, окнами в бесконечное «вне» нашей Вселенной.

С тех пор чёрные дыры стали всё чаще появляться на страницах фантастических книг и журналов. Их рассматривали прежде всего как угрозу звездолётам будущего или как «место заключения» невероятно древних и могущественных существ. Впрочем, начиная с первой половины 1970-х годов чёрные дыры в фантастике стали всё больше походить на те описания, что давали физики.

Внутри дыры

Учёные довольно быстро определились со структурой чёрных дыр, которую удалось описать с помощью ОТО. В рамках этой теории чёрная дыра описывается не как вещество или энергия, а как мощное гравитационное поле, сконцентрированное в чудовищно искривлённой области пространственно-временного континуума. Её внешняя граница представляет собой замкнутую поверхность, которая получила название «горизонт событий»; если перед коллапсом звезда не вращалась, то радиус этой границы совпадает с радиусом Шварцшильда.

Снаружи чёрная дыра ведёт себя как обычный космический объект, только очень и очень тяжёлый. Если мы пошлём в её сторону зонд, что будет передавать световые сигналы через равные промежутки времени, то при его приближении к «горизонту событий» заметим, что интервалы между сигналами увеличиваются, поскольку время на борту замедляется. Длина световой волны, испускаемой зондом, будет стремительно расти, и вскоре сигнал превратится в радиоволны, а потом — в низкочастотные электромагнитные колебания, зафиксировать которые почти невозможно.

Как только зонд пересечёт «горизонт», информация с борта поступать перестанет. При этом аппарат повлияет на чёрную дыру, передав ей свою массу, электрический заряд и момент вращения. Внутри дыры зонд начнёт падать к её центру — сингулярности, которая для неподвижной дыры представляет собой точку, а для вращающейся — кольцо; поперечник сингулярности не может превышать длину Планка-Уилера, равную 1,62×10−33 см. С точки зрения внешнего наблюдателя, зонд будет падать в центр дыры вечно, однако в действительности его разорвут растущие приливные силы. Этот процесс называют «спагеттификацией»: объект резко растягивается по вертикали и сжимается по горизонтали.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Чёрная дыра поглощает звезду (в представлении художника, NASA/JPL-Caltech)

Описанная модель просуществовала недолго. В 1965 году американец Эзра Ньюман, используя ОТО в модификации новозеландца Роя Керра, описал вариант вращающейся чёрной дыры с мощным электрическим зарядом. Оказывается, в таком случае дыра будет окружена эргосферой, которую можно покинуть, не свалившись в сингулярность. Более того, из дальнейших расчётов следовало, что сингулярность такой дыры будет работать как «червоточина» — тоннель в другие вселенные или даже другие эпохи. Разумеется, столь богатой идеей почти сразу воспользовались фантасты: например, способ транспортировки через чёрные дыры описан в романе Джо Холдемана «Бесконечная война» (1974).

Интересные последствия имела и попытка применить к чёрным дырам квантовую механику. Её предпринял в 1975 году знаменитый физик Стивен Хокинг. Флуктуации вакуума непрерывно порождают пары виртуальных частиц (частицу и античастицу), которые при обычных условиях тут же «погибают». Однако если такая пара материализуется на «горизонте событий», то одна частица провалится к сингулярности, а другая при благоприятных условиях вылетит наружу. В результате дыра превращается в источник излучения, которое назвали «испарением Хокинга». Из его выкладок также следовало то, что могут существовать короткоживущие дыры микронных размеров: во время испарения они должны выделять колоссальное количество энергии.

Идеи Хокинга, которые он активно продвигал в своих научно-популярных работах, быстро перекочевали и в фантастику: скажем, микроскопические дыры используют для производства энергии персонажи романа Джона Варли «Горячая линия Офиути» (1977).

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Моделирование процесса создания микроскопической чёрной дыры (Lucas Taylor / CERN)

Увидеть тьму

За десятилетия учёные описали множество теоретических моделей чёрных дыр, и определить, какие из них верны, можно только с помощью астрономических наблюдений. Поскольку увидеть дыры невозможно, приходится прибегать к косвенным методам.

Например, если рядом с чёрной дырой находится большая звезда, то дыра втягивает в себя вещество этой звезды (процесс называется аккрецией). При этом вокруг дыры за счёт вращательного момента формируется аккреционный диск, газ в котором разгоняется до релятивистских скоростей и нагревается так, что начинает излучать в рентгеновском диапазоне. Соответственно, диск и саму чёрную дыру можно обнаружить рентгеновским телескопом. К сожалению, этим методом трудно отличить дыры от нейтронных звёзд. Необходимо разглядеть важное отличие: газ, падающий на твёрдую поверхность, продолжает интенсивно излучать, а приближающийся к «горизонту событий» быстро меркнет.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Чёрная дыра с аккреционным диском — мощный источник рентгеновского излучения (в представлении художника, NASA/JPL)

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Рентгеновский источник Cygnus X-1 (NASA)

Именно такой эффект был обнаружен при наблюдении за рентгеновским источником Лебедь X-1 (Cygnus X-1), открытым в 1964 году. Он находится в 6070 световых годах от нас и представляет собой двойную систему, состоящую из голубого сверхгиганта HDE 226868 и чёрной дыры с массой 14,8 солнечных и радиусом «горизонта событий» около 300 км. Материя в аккреционном диске нагревается до миллионов градусов, генерируя рентгеновские лучи.

При этом из диска бьют две перпендикулярные струи, уносящие часть набегающего материала в межзвёздное пространство. Интересно, что в декабре 1974 года двойной объект Лебедь X-1 стал предметом дружественного пари между физиками Стивеном Хокингом и Кипом Торном: Хокинг сделал ставку на то, что чёрной дыры там нет. Он признал проигрыш в 1990 году, когда многочисленные наблюдения подтвердили точку зрения его коллеги. Торн в награду получил годовую подписку на журнал Penthouse.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Рентгеновский источник Cygnus X-1 в представлении художника (NASA)

Модели показывают, что чёрные дыры могут сталкиваться и сливаться друг с другом. В результате образуются объекты массой в миллионы и миллиарды солнечных. Сегодня астрофизики полагают, что подобные тела находятся в центрах большинства галактик, включая Млечный Путь. Наша центральная сверхмассивная чёрная дыра Sagittarius A* расположена в созвездии Стрельца, на расстоянии около 26 тысяч световых лет. Странное название объекта — это шутка учёных: обнаруживший чёрную дыру астроном Роберт Браун заявил, что открытие его «очень взбудоражило», а звёздочками в квантовой физике обозначают «возбуждённые состояния» атомов.

Много шума наделало апрельское сообщение группы учёных из проекта Event Horizon Telescope, объединяющего мощности восьми радиотелескопов в разных районах земного шара. Они заявили, что впервые в истории получили прямое изображение тени сверхмассивной чёрной дыры. Эта дыра находится в центре галактики М 87 (Messier 87), расположенной в созвездии Девы на расстоянии 53,5 миллионов световых лет от нас. На то, чтобы обработать астрономические данные и подготовить на их основе исторический снимок, ушло два года. Это достижение подтвердило: модель чёрных дыр, построенная на основе ОТО, ближе всего к действительности. Увы, но оно же поставило крест на гипотезе о «червоточинах» — попасть через чёрные дыры в другие пространства или эпохи невозможно в принципе.

горизонт уиллера что это. Смотреть фото горизонт уиллера что это. Смотреть картинку горизонт уиллера что это. Картинка про горизонт уиллера что это. Фото горизонт уиллера что это

Исторический снимок: тень чёрной дыры в центре галактики М 87, созвездие Девы (ESO [CC BY 4.0])

Впрочем, непосредственное изучение чёрных дыр ещё только начинается. И никто сегодня не может сказать, куда заведёт науку желание заглянуть в «пузырь тьмы»…

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *