что означает сократить дробь
Сокращение дробей. Что значит сократить дробь?
Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.
Сокращение дробей, определение и формула.
Что такое сокращение дробей? Что значит сократить дробь?
Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно основному свойству рациональных чисел.
Формула сокращения дробей основного свойства рациональных чисел.
Рассмотрим пример:
Сократите дробь \(\frac<9><15>\)
Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.
Ответ: после сокращения получили дробь \(\frac<3><5>\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.
Как сокращать дроби? Сокращение дроби до несократимого вида.
Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.
Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.
Получите несократимую дробь \(\frac<48><136>\).
Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6
Правило сокращения дроби до несократимого вида.
Пример:
Сократите дробь \(\frac<152><168>\).
Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6
Ответ: \(\frac<19><21>\) несократимая дробь.
Сокращение неправильной дроби.
Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.
Рассмотрим пример:
Сократите неправильную дробь \(\frac<44><32>\).
Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.
Сокращение смешанных дробей.
Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.
Рассмотрим пример:
Сократите смешанную дробь \(2\frac<30><45>\).
Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.
Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.
Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:
Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.
На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac<100><150>\).
Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50
Получили несократимую дробь \(\frac<2><3>\).
Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac<100><150>\) на 2.
Получили сократимую дробь \(\frac<50><75>\).
Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac<4><8>\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.
Пример:
Сравните две дроби \(\frac<2><3>\) и \(\frac<8><12>\).
Эти две дроби равны. Рассмотрим подробно дробь \(\frac<8><12>\):
Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.
Пример:
Сократите если возможно следующие дроби: а) \(\frac<90><65>\) б) \(\frac<27><63>\) в) \(\frac<17><100>\) г) \(\frac<100><250>\)
Сокращение дроби.
Мы уже познакомились с основным свойством дроби (см. статью здесь). И знаем, как получить дробь, равную данной. Но сегодня мы поговорим о ДЕЛЕНИИ дроби на одно и то же число.
Деление числителя и знаменателя на одно и то же натуральное число называется СОКРАЩЕНИЕМ ДРОБИ. Но при этом – дроби остаются РАВНЫМИ.
Как сокращать дроби? Будем разбираться.
Итак, сокращение дроби – это действие перехода к новой дроби, равной заданной, но с меньшими числителем и знаменателем. Сокращение дроби выполняют для того, чтобы ее упростить.
Чтобы сократить дробь, нужно разделить числитель и знаменатель дроби на одно и то же натуральное число, которое будет называться общим делителем.
Например, дана дробь 2/6.
На какие числа можно разделить 2? 2 делится на 1, 2. На какие числа можно разделить 6? 6 делится на 1, 2, 3, 6.
Но, мы знаем, что если дробь разделить на 1, то будет та же самая дробь. Поэтому на 1 не сокращают!
Теперь посмотрим на делители чисел 2 и 6. Сравним их:
Найдем одинаковые делители – это только число 2. Значит, мы можем разделить числитель и знаменатель нашей дроби только на 2.
Дробь 1/3 сократить нельзя.
Посмотрим на дробь 16/44. 16 делится на 2, 4, 8, 16. 44 делится на 2, 4, 11, 44. Одинаковые делители – 2, 4.
Разделим дробь на 2 — 16:2/44:2 = 8/22. Эту дробь можно еще сократить на 2. 8/22 = 8:2/22:2 = 4/11. Это очень долго, поэтому будем сокращать сразу на 4.
Дробь 4/11 сократить нельзя.
Рассмотрим дробь с большими числами: 210/315.
210 делится на 2, 3, 5, 7, 10, 30, 70, 105, 210.
315 делится на 3, 5, 7, 9, 15, 21, 63, 105, 315.
Общие делители: 3, 5, 7, 105. Будем сокращать дробь постепенно:
Мы видим, что если сокращать поочереди на все общие числители, начиная с меньшего, очень долго. Поэтому для удобства принято сокращать дробь сразу на больший числитель. Т.е. 210/315 = 210:105 / 315:105 = 2/3 Полученную дробь 2/3 сократить нельзя.
Наибольший общий делитель называют сокращенно — НОД.
Бывают случаи, когда общего делителя нет. Например, у дробей 3/59, 6/31, 11/23 и т.д. Тогда говорят о том, что эти дроби не подлежат сокращению.
Дроби, которые сократить НЕЛЬЗЯ называются НЕСОКРАТИМЫМИ, а числитель и знаменатель называют ВЗАИМНО-ПРОСТЫМИ.
Т.е. наша задача превратить любую дробь в несократимую. Итак, мы познакомились в двумя способами сокращения дробей:
Проверка: 28/36 – наибольший общий делитель (НОД) = 4, значит 28:4/36:4 = 7/9;
56/28 – НОД = 28, значит, 56:28/28:28 = 2/1 = 2;
114/171 – НОД = 57, значит, 114:57/171:57 = 2/3;
102/153 – НОД = 51, значит, 102:51/153:51 = 2/3.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 74
Сокращение дробей: правила и примеры
Разберемся в том, что такое сокращение дробей, зачем и как сокращать дроби, приведем правило сокращения дробей и примеры его использования.
Что такое «сокращение дробей»
В результате такого действия получится дробь с новым числителем и знаменателем, равная исходной дроби.
Приведение дробей к несократимому виду
Это можно сделать, если сократить числитель и знаменатель на их наибольший общий делитель (НОД). Тогда, по свойству наибольшего общего делителя, в числителе и в знаменателе будут взаимно простые числа, и дробь окажется несократимой.
Приведение дроби к несократимому виду
Чтобы привести дробь к несократимому виду нужно ее числитель и знаменатель разделить на их НОД.
6 24 = 6 ÷ 6 24 ÷ 6 = 1 4
Сокращение дробей удобно применять, чтобы не работать с большими цифрами. Вообще, в математике существует негласное правило: если можно упростить какое-либо выражение, то нужно это делать. Под сокращением дроби чаще всего подразумевают ее приведение к несократимому виду, а не просто сокращение на общий делитель числителя и знаменателя.
Правило сокращения дробей
Чтобы сокращать дроби достаточно запомнить правило, которое состоит из двух шагов.
Правило сокращения дробей
Чтобы сократить дробь нужно:
Рассмотрим практические примеры.
Пример 1. Сократим дробь.
Найдем НОД числителя и знаменателя. Для этого в данном случае удобнее всего воспользоваться алгоритмом Евклида.
182 195 = 182 ÷ 13 195 ÷ 13 = 14 15
Готово. Мы получили несократимую дробь, которая равна исходной дроби.
Как еще можно сокращать дроби? В некоторых случаях удобно разложить числитель и знаменатель на простые множители, а потом из верхней и нижней частей дроби убрать все общие множители.
Пример 2. Сократим дробь
Для этого представим исходную дробь в виде:
360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7
Избавимся от общих множителей в числителе и знаменателе, в результате чего получим:
360 2940 = 2 · 2 · 2 · 3 · 3 · 5 2 · 2 · 3 · 5 · 7 · 7 = 2 · 3 7 · 7 = 6 49
Наконец, рассмотрим еще один способ сокращения дробей. Это так называемое последовательное сокращение. С использованием этого способа сокращение производится в несколько этапов, на каждом из которых дробь сокращается на какой-то очевидный общий делитель.
Пример 3. Сократим дробь
2000 4400 = 2000 ÷ 100 4400 ÷ 100 = 20 44
20 44 = 20 ÷ 2 44 ÷ 2 = 10 22
Получившийся результат снова сокращаем на 2 и получаем уже несократимую дробь:
Основные сведения о сокращении дробей — правила и свойства сокращения
Что такое «сокращение дробей»
Сокращение дроби — деление ее числителя и знаменателя на какой-то общий делитель.
Условия для общего делителя:
Итогом сокращения является некая новая дробь, которая равна начальной дроби.
Основное свойство дроби
Ключевое свойство дроби: при умножении или делении числителя и знаменателя дроби на одинаковое натуральное число в результате получается дробь, которая равна начальной дроби.
Правило сокращения дробей
Сокращение дробей состоит в том, чтобы в результате получить в числителе и знаменателе минимальные из возможных чисел.
Смысл сокращения заключается в получении несократимой дроби. Для этого требуется разделить числитель и знаменатель на наибольший общий делитель ( Н О Д ). В итоге дробь будет преобразована в несократимую дробь.
a ÷ Н О Д ( a ; b ) b ÷ Н О Д ( a ; b )
Данная дробь является несократимой. Этот вывод сделан на основании свойства Н О Д :
Алгоритм сокращения
Сокращение любой обыкновенной дроби следует выполнять в соответствии со стандартным алгоритмом:
Секретом быстрого сокращения дроби является умение определять Н О Д для числителя и знаменателя. Хорошими помощниками в этом случае станут таблица умножения и навыки разложения чисел на простейшие множители.
При умножении всех общих множителей получается:
Н О Д для 36 и 84 равен 12.
Допускается последовательное сокращение числителя и знаменателя на общий делитель. Данная методика позволяет упростить сокращение дробей, на месте числителя и знаменателя в которых присутствуют крупные числа, а определенный ранее НОД вызывает сомнения.
Характерные примеры
Дана дробь, которую требуется сократить:
Заметим, что в условии задания записана обыкновенная дробь. Воспользуемся стандартным алгоритмом сокращения, то есть выполним деление числителя и знаменателя на общий делитель 3. Получим:
3 15 = 3 ÷ 3 15 ÷ 3 = 1 5
Нужно выполнить сокращение обыкновенной дроби:
Сократить дробь получится, если найти частное от деления числителя и общего делителя, знаменателя и общего делителя. Общим делителем является число 2. Получим:
4 16 = 4 ÷ 2 16 ÷ 2 = 2 8
Далее можно еще раз сократить дробь, то есть разделить числитель и знаменатель на число 2:
Нужно сократить дробь:
В первую очередь следует выполнить разложение чисел, которые записаны в числителе и знаменателе:
Можно исключить общие множители и найти произведение оставшихся:
135 180 = 3 2 × 2 = 3 4
Дана обыкновенная дробь, которую нужно сократить:
18 81 = 18 ÷ 9 81 ÷ 9 = 2 9
Требуется сократить дробь:
150 225 = 50 75 = 10 15 = 2 3
Дана дробь, которую требуется сократить:
Определим Н О Д путем разложения числителя и знаменателя, чтобы получить простые множители:
168 = 2 × 2 × 2 × 3 × 7
240 = 2 × 2 × 2 × 2 × 3 × 5
Найдем произведение всех общих множителей:
Таким образом, Н О Д 168 и 240 составляет 24.
Далее следует разделить числитель и знаменатель дроби на Н О Д :
168 240 = 168 ÷ 24 240 ÷ 24 = 7 10
Нужно выполнить сокращение дроби:
Определим Н О Д путем разложения числителя и знаменателя на простые множители:
360 = 2 × 2 × 2 × 3 × 3 × 5
540 = 2 × 2 × 3 × 3 × 3 × 5
Перемножим все общие множители, получим:
2 × 2 × 3 × 3 × 5 = 180
В результате, Н О Д для 360 и 540 составит 180.
Далее необходимо разделить числитель и знаменатель дроби на Н О Д :
360 540 = 360 ÷ 180 540 ÷ 180 = 2 3
Привести дробь к несократимому виду:
420 = 2 × 2 × 3 × 5 × 7
2520 = 2 × 2 × 2 × 3 × 3 × 5 × 7
Произведение общих множителей равно:
2 × 2 × 3 × 5 × 7 = 420
В результате Н О Д для 420 и 2520 равен 420.
420 2520 = 420 ÷ 420 2520 ÷ 420 = 1 6
Привести дробь к несократимому виду:
1575 = 3 × 3 × 5 × 5 × 7
3450 = 2 × 3 × 5 × 5 × 23
Найдем произведение общих множителей:
Н О Д для 1575 и 3450 составляет 72.
Сократим дробь с помощью деления числителя и знаменателя дроби на НОД:
Сокращение алгебраических дробей: правило, примеры.
Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.
Смысл сокращения алгебраической дроби
В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.
Сокращение алгебраической дроби представляет собой аналогичное действие.
Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.
Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.
Все ли алгебраические дроби подлежат сокращению?
С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.
Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.
Правило сокращения алгебраических дробей
Правило сокращения алгебраических дробей состоит из двух последовательных действий:
Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.
Характерные примеры
Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:
Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).
К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105
Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:
(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:
24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105
По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.
Решение
Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:
Однако, более рациональным способом будет запись решения в виде выражения со степенями:
Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).
Решение
Возможно сократить дробь таким образом:
Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.
Решение
Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:
Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:
Краткое решение без пояснений запишем как цепочку равенств:
Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.
Решение
На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:
Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:
Теперь становится виден общий множитель, осуществляем сокращение:
Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.